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Introduction

In this diploma thesis we are going to show existence and uniqueness of solutions to stochas-
tic partial differential equations on a Gelfand triple V ⊂ H ⊂ V ∗ driven by Poisson type
noise with locally monotone coefficients of the form

X (t) = A (s,X (s)) ds+B (s,X (s)) dW (s)

+

ˆ
Z
f (s,X (s−) , z) µ̄ (dz, ds) ,

X (0) = X0,

(1)

on a finite time horizon, where W is a cylindrical Wiener process and µ̄ is a compensated
Poisson random measure.

Stochastic partial differential equations with jump type noise, such as Lévy type pertuba-
tions or Poisson type noise, play an important role for modelling real world problems. In
physical research, risk modelling and option pricing in finance, genetics and even climate
based research these equations emerge to a greater extent, since a Lévy pertubation or the
additional Poisson jump term offer more suitable modelling abilities than stochastic partial
differential equations driven by a Wiener process solely, cf. [App04], [NØP09], [HIP09],
[NR13] or [XFLZ13].
Therefore, it should come to no surprise that in the last few years there has been a
high research interest in mathematics concerning existence and uniqueness of solutions
to stochastic partial differential equations (abbr.: SPDE) driven by discontinuous jump
terms, especially driven by Lévy type noise. For example one can have a look in [LR04],
[Kno05], [PZ07], [RZ07], [App09], [NØP09], [MPR10], [Pr0] or [BLZ11] and the references
therein to get a rough overview. This research with respect to jump type noise extends
even to stochastic partial differential equations on separable Banach spaces, cf. [RZ06],
and has been recently carried out for multi-valued maps, see [Ste12] and [LS14]. Ear-
lier, SPDEs driven by general discontinuous martingales had been studied by Gyöngy and
Krylov already, see [GK80], [GK82] and [Gy2].
Typical examples to equations of type-(1) are stochastic Burgers equations and the stochas-
tic p-Laplace equations.

The result presented in Theorem 2.2.1 is based upon the paper of Brzeźniak, Liu and
Zhu [BLZ11] and states, that under certain conditions, such as local monontonicity and
coercivity, equation (1) has a unique (strong) solution in the sense of Defintion 2.1.1. Due
to the Lévy–Itô decomposition, the class of SPDEs driven by Lévy type noise can be
reduced to the class of SPDEs, where the stochastic pertubation term is a sum of a Wiener
process and a compensated Poisson random measure as in (1), cf. Section D.1 in [Ste12]
or Section 9 in [NØP09].
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Introduction

More precisely, a stochastic partial differential equation of the type

X (t) = A (s,X (s)) ds+ σ (s,X (s)) dL (s) ,

where L is a general Lévy process, can be written in the form of (1). However, contrary
to the result in [BLZ11], we do not involve big jumps in our equation, which would cause
the appearance of and additional summand in (1) driven by a general Poisson random
measure.

The variational framework was commenly used (see e.g. [PR07]) to show existence and
uniqueness to SPDEs driven by a cylindrical Wiener process, i.e. f ≡ 0 in (1), under the
assumption that A and B are monotone operators and that A and B fulfill a coercivity
condition. In [LR10] and [LR14] this result was improved by assuming that the operators A
and B are only locally monotone. In [BLZ11] this approach led to existence and uniqueness
for (1) under the further assumption, that also f is locally monotone. However, there is no
need for f to fulfill a coercivity condition, too. A further, recently published generalization
is the use of a generalized coercivity condition on A and B, cf. [LR13], in case f ≡ 0 to
handle the tamed 3D-Navier-Stokes equation.
Since this thesis is based upon [BLZ11], we do not cope with a generalized coercivity
condition here, but use some minor but important changes – which are inspired from
[LR14] – to improve the assumptions made in [BLZ11] and [LR10]. It is important to
make note of our division of uniqueness and existence of solutions to (1) in Theorem 2.2.1
depending on the given assumptions, because the claimed uniqueness (and even existence)
result in [BLZ11] does not follow directly in general from the assumptions made therein,
cf. Remark 2.2.2.
Hence this work can be understood as an extension to [PR07] and [LR10] with respect to the
compensated Poisson random measure-term and covers all the results therein. Moreover,
one should not lose track of the fact that in case B ≡ 0 this thesis provides a tool to handle
SPDEs of pure jump type (sometimes called pure Lévy jump type) as well.

The intention of this work is to prove existence and uniqueness of solutions to (1) under
corrected and weakened assumptions in a comprehensible way and in all details. For a
discussion on the assumptions, we refer to Remark 2.2.2. Furthermore this work will
provide some applications proved in all details, too.

Although this thesis is meant to be self-contained, the reader is required to have knowledge
of stochastic integration in Hilbert spaces as well as knowledge of (cylindrical) Wiener
processes. In this thesis we mainly stick to the notation of Section 2 and 3 in [PR07].
Sobolev embeddings are used frequently in Chapter 3, but summarized in Appendix F.
Nevertheless, it is recommended to know about functional analysis and weak convergence.
Let us mention [Alt06] and [Bre10] as references in this area.

Let us briefly outline the structure of this thesis.

In Chapter 1 we will introduce Poisson point processes and Poisson random measures.
Briefly we will recall all necessary fundamentals of the stochastic integration with respect
to Poisson point processes.

Chapter 2 contains the main result of this thesis and its proof. After introducing the
variational framework, we define what is meant by a solution to (1) and postulate the

6



main assumptions (cf. conditions (A1)–(A4)). They lead to Theorem 2.2.1 and Remark
2.2.2 in which we discuss the differences between our assumptions and the familiar results
in [BLZ11] and others. Afterwards we will give a short outline of the proof and finally
prove existence of solutions to (1) and uniqueness.

In the last chapter of this thesis, Chapter 3, Theorem 2.2.1 is applied to semilinear and
quasi-linear stochastic equations driven by Poisson type noise. In the first case one can
think of a stochastic Burgers type equations. The second case will be the p-Laplace equa-
tion. Following the intention of this work, the verification of all assumptions made in
Chapter 2 will be done in all details.

In section A–F of the appendix we will present all auxiliary results needed in Chapters 2
and 3 for completeness, in particular those, that are missing or claimed, but not proved in
[BLZ11].

I would like to thank my supervisor Prof. Dr. Michael Röckner for leading me to the field of stochastic partial

differential equations and his constant support in the past years. Special thanks are given to Dr. Simon Michel for

his helpful comments. Finally, I am very grateful for the support of my family and my better and worse half, Jule.
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1. Stochastic Integration with respect to
Poisson Processes

In this chapter we will introduce the Poisson random measure and the Poisson point
process. Afterwards we will establish the fundaments on stochastic integration with respect
to a Poisson point process. Our main references are [Kno05] and [IW81].

1.1. Poisson Random Measures and Poisson Point Processes

Let (Ω,F , P ) be a complete probability space. Let (S,S) be a measurable space and let
MN̄ (S) denote the set of N̄ = N0∪{+∞}-valued measures on (S,S). We write B (MN̄ (S))
to denote the smallest σ-field on MN̄ (S) such that all mappings jB : MN̄ (S) 3 µ 7→ µ (B) ∈
N̄ for B ∈ S are measurable, i.e.

B (MN̄ (S)) = σ (MN̄ (S) 3 µ 7→ µ (B) |B ∈ S) .

1.1.1 Definition. A map µ : Ω× S → N̄ is called N̄-valued random measure, if

(i) µ (ω, ·) ∈MN̄ (S) for each ω ∈ Ω and

(ii) µ (·, B) is an N̄-valued random variable on (Ω,F , P ) for all B ∈ S.

For simplicity of notation we will write µ (B) instead of µ (·, B).

1.1.2 Definition. An N̄-valued random measure µ is called Poisson random measure if
the following conditions hold.

(i) For all B ∈ S with E [µ (B)] < ∞, µ (B) : Ω → N̄ is a Poisson distributed random
variable with parameter E [µ (B)], i.e.

P (µ (B) = n) = e−E[µ(B)] · (E [µ (B)])n

n!

for all n ∈ N̄. If E[µ (B)] =∞, then µ (B) =∞ P -a.s.

(ii) For any pairwise disjointB1, . . . , Bn ∈ S, n ∈ N, the random variables µ (B1) , . . . , µ (Bn)
are independent.

Now let (Z,Z) be another measurable space.

1.1.3 Definition. A point function p on Z is a mapping p : Dp ⊂ (0,∞)→ Z, where the
domain Dp of p is countable.
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Chapter 1. Stochastic Integration with respect to Poisson Processes

1.1.4 Remark. Each point function p on Z induces a measure µp (dt,dz) on
(
(0,∞) ×

Z,B ((0,∞))⊗Z
)
. Let P (Dp) denote the power set of Dp and let p̃ : Dp → (0,∞)×Z, t 7→

(t, p (t)). Let ν be the counting measure on (Dp,P (Dp)) defined by ν (A) = #A for all
A ∈ P (Dp). Now let us define the measure

µp (A×B) := ν
(
p̃−1 (A×B)

)
for all A ∈ B ((0,∞)) and B ∈ Z. Then we have

µp (A×B) = # {t ∈ Dp | t ∈ A, p (t) ∈ B} .

Notation. For given t ∈ (0,∞) and B ∈ Z we will set A = ]0, t] and write

µp (t, B) = µp (]0, t]×B) .

Let
PZ = {p : Dp ⊂ (0,∞)→ Z | Dp is countable}

be the space of all point functions on Z and define

BPZ := σ (PZ 3 p 7→ µp (t, B) | t > 0, B ∈ Z) .

1.1.5 Definition. (i) A random variable p : (Ω,F)→ (PZ ,BPZ ) is called point process
on Z and (Ω,F , P ).

(ii) Let θt be the shift operator given by θt : (0,∞)→ (0,∞), s 7→ s+ t. A point process
p is called stationary if for every t > 0 the process p and the shifted process θtp have
the same probability laws.

(iii) A point process p is called σ-finite if there exists a sequence (Bn)n∈N ⊂ Z with
Bn ↗ Z as n→∞ and

E [µp (t, Bn)] <∞

for all t > 0 and n ∈ N.

(iv) A Poisson point process is a point process p on Z if there exists a Poisson random
measure ν on ((0,∞)× Z,B ((0,∞))⊗Z) and a P -zero set N ∈ F such that for all
ω ∈ NC and all A ∈ B ((0,∞)), B ∈ Z

µp(ω) (A×B) = ν (ω,A×B) .

1.1.6 Proposition. Let p be a σ-finite Poisson point process on Z and (Ω,F , P ). Then
p is stationary if and only if there exists a σ-finite measure m on (Z,Z) such that

E [µp (dt,dz)] = dt⊗m (dz) .

Here, dt denotes the Lebesgue-measure on ((0,∞) ,B ((0,∞))). In this case the measure
m is uniquely determined and we call it the characteristic measure of µp.

Proof. See [Kno05, Proposition 2.10].
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1.2. Stochastic Integration with respect to a Poisson Point Process

1.1.7 Definition. Let Ft, t > 0 be a filtration on (Ω,F , P ) and p a point process on Z
and (Ω,F , P ).

(i) The process p is called (Ft)-adapted, if for every t > 0 and B ∈ Z, µp (t, B) is
(Ft)-measurable.

(ii) The process p is called an (Ft)-Poisson point process, if it is (Ft)-adapted and σ-finite,
such that

{µp (]t, t+ h]×B) |h > 0, B ∈ Z}

is independent of Ft for all t > 0.

Further, we define the set

Γµp := {B ∈ Z |E [µp (t, B)] <∞ for all t > 0} .

1.1.8 Definition. Let Ft be a right-continuous filtration on (Ω,F , P ). Let p be a Poisson
point process on Z and (Ω,F , P ). The process p is said to be of class (QL) or quasi-left-
continuous with respect Ft, if it is (Ft)-adapted and σ-finite and for all B ∈ Z there exists
a process ν (t, B) : Ω→ R, t > 0, such that the following conditions hold:

(1) If B ∈ Γµp , the process ν (t, B), t > 0, is a continuous (Ft)-adapted increasing process
with ν (0, B) = 0 P.-a.s.

(2) For all t > 0 and for P -a.e. ω ∈ Ω, ν (ω) (t, ·) is a σ-finite measure on (Z,Z).

(3) If B ∈ Γµp , then

µ̄p (t, B) := µp (t, B)− ν (t, B) , t > 0,

is an (Ft)-martingale.

In this case we call ν the compensator of µp and µ̄p is called compensated Poisson random
measure of µp.

1.1.9 Proposition. Let Ft, t > 0, be a right-continuous filtration on (Ω,F , P ). Let m
be a σ-finite measure on (Z,Z) and let p be a stationary (Ft)-Poisson point process on Z
with characteristic measure m.
Then p is quasi-left-continuous with respect to Ft and with compensator

ν (t, B) = t ·m (B) , t > 0, B ∈ Z.

1.2. Stochastic Integration with respect to a Poisson Point
Process

In this section we want to construct the stochastic integral with respect to compensated
Poisson random measures, where the random measure is induced by a stationary Poisson
point process.
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Chapter 1. Stochastic Integration with respect to Poisson Processes

Let (Ω,F , P ) be a complete probability space with normal filtration (Ft), t > 0, and let
(Z,Z) be another measurable space with a σ-finite measure m.
We fix a stationary (Ft)-Poisson point process p on Z as defined in the previous section
with characteristic measure m. Since p is stationary and by Proposition 1.1.9, p is quasi-
left-continuous with respect to Ft and the compensator ν of the induced measure µp is
given by ν = dt⊗m. The compensated Poisson random measure is given by

µ̄p = µp − ν = µp − dt⊗m.

We will denote these measures simply by µ and µ̄, since p is fixed throughout the whole
section.
Further let (H, 〈·, ·〉) be a separable Hilbert space, T ∈ (0,∞) and set

Γ = {B ∈ Z |m (B) <∞} .

LetMT
2 (H) be the space of all càdlàg square integrable martingales in H with respect to

(Ft).

1.2.1 Definition. An H-valued process Φ (t) : Ω × Z → H, t ∈ [0, T ], is an elementary
process, if there exists a partition 0 = t0 < t1 < · · · < tk = T , k ∈ N and for m ∈
{0, k − 1} there exist pairwise disjoint Bm

1 , . . . , B
m
nm ∈ Γ, nm ∈ N, and functions Φm

i ∈
L2 (Ω,Ftm , P ;H), 0 6 i 6 nm, such that the following holds:

Φ =

k−1∑
m=0

nm∑
i=1

Φm
i I]tm,tm+1]×Bmi .

The linear space of all elementary processes is denoted by E .

The stochastic integral with respect to µ̄ can now be defined for an elementary process
Φ ∈ E and t ∈ [0, T ] by

Int (Φ) (t) :=

ˆ
]0,t]

ˆ
Z

Φ (s, z) µ̄ (dt,dz)

:=

k−1∑
m=0

nm∑
i=1

Φm
i (µ̄ (tm+1 ∧ t, Bm

i )− µ̄ (tm ∧ t, Bm
i )) .

Then Int (Φ) is linear in Φ ∈ E and P -a.s. well defined. We set

‖Φ‖2T := E

[ˆ
]0,t]

ˆ
Z
‖Φ (s, z)‖2H m (dz) ds

]

for Φ ∈ E .

1.2.2 Proposition. For Φ ∈ E we have Int (Φ) ∈ M2
T (H), Int (Φ) (0) = 0 P -a.s. For all

t ∈ [0, T ]

E
[
‖Int (Φ) (t)‖2H

]
= E

[ˆ
]0,t]

ˆ
Z
‖Φ (s, z)‖2H m (dz) ds

]
(1.2.1)
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1.2. Stochastic Integration with respect to a Poisson Point Process

holds. In other words, Int :
(
E , ‖ · ‖2T

)
→
(
M2

T (H) , ‖ · ‖M2
T

)
is an isometry with

‖Int (Φ)‖M2
T

= ‖Φ‖2T .

Proof. See [Kno05, Proposition 2.22].

Up to this point, ‖·‖T is only a seminorm on E . Thus let us consider the space of equivalence
classes of elementary processes with respect to ‖ · ‖T and let us denote it again by E for
simplicity of notation. E is dense in the completion E‖·‖T of E with respect to ‖ · ‖T and
hence there exists a unique isometric extension of Int to E‖·‖T and the isometry in (1.2.1)
also holds for each process in E‖·‖T .
The following proposition will characterize E‖·‖T . But first we need to define the predictable
σ-algebra on [0, T ]× Ω× Z by

PT (Z) := σ (g : [0, T ]× Ω× Z → R | g is (Ft ⊗ Z) -adapted and left-continuous)

= σ ({]s, t]× Fs ×B | 0 6 s 6 t 6 T, Fs ∈ Fs, B ∈ Z}

∪ {{0} × F0 ×B | F0 ∈ F0, B ∈ Z})

and set

N 2
µ̄ (T,Z;H) :=

Φ: [0, T ]× Ω× Z → H

∣∣∣∣∣∣ Φ is PT (Z) /B (H) -measurable

and ‖Φ‖T = E

[ˆ
]0,T ]

ˆ
Z
‖Φ (s, z)‖2H m (dz) ds

] 1
2

<∞

 .

1.2.3 Proposition. In the situation above we have

E‖·‖T = N 2
µ̄ (T,Z;H)

and
N 2
µ̄ (T,Z;H) = L2 ([0, T ]× Ω× Z, PT (Z) , dt⊗ P ⊗m; H) .

Proof. See [Kno05, Proposition 2.24].

1.2.1. Properties of the Poisson integral

We will now collect some important properties of the stochastic integral with respect to a
compensated Poisson random measure.

1.2.4 Proposition. Let Φ ∈ Nµ̄ (T,Z;H) and let τ be an (Ft)-stopping time with P (τ 6 T ) =
1. Then I]0,τ ]Φ ∈ N 2

µ̄ (T,Z;H) and
ˆ

]0,t]

ˆ
Z
I]0,τ ] (s) Φ (s, z) µ̄ (ds, dz) =

ˆ
]0,t∧τ ]

ˆ
Z

Φ (s, z) µ̄ (ds, dz) P -a.s.

for all t ∈ [0, T ].
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Chapter 1. Stochastic Integration with respect to Poisson Processes

Proof. See [Kno05, Proposition 3.5].

1.2.5 Proposition. Let Φ ∈ Nµ̄ (T,Z;H) and set

X (t) :=

ˆ
]0,t]

ˆ
Z

Φ (s, z) µ̄ (ds, dz) , t ∈ [0, T ] .

Then X is cádlág and X (t) = X (t−) P -a.s. for all t ∈ [0, T ].

Proof. See [Kno05, Proposition 3.6].

1.2.6 Proposition. Let Φ ∈ N 2
µ̄ (T,Z;H), H̃ be another Hilbert space and let L ∈

L
(
H; H̃

)
. Then L (Φ) ∈ N 2

µ̄

(
T,Z; H̃

)
and

L

(ˆ
]0,t]

ˆ
Z

Φ (s, z) µ̄ (ds, dz)

)
=

ˆ
]0,t]

ˆ
Z
L (Φ (s, z)) µ̄ (ds, dz) P -a.s.

for all t ∈ [0, T ].

Proof. See [Kno05, Proposition 3.7].

1.2.7 Proposition. Let Φ ∈ N 2
µ̄ (T,Z;H). Then for all t ∈ [0, T ]

E

[ˆ
]0,t]

ˆ
Z

Φ (s, z) µ (ds, dz)

]
= E

[ˆ
]0,t]

ˆ
Z

Φ (s, z) m (dz) ds

]
.

Proof. See [Ste12, Proposition 2.21].

Let [X]t denote the square bracket of an H-valued process X (t).

1.2.8 Proposition. Let Φ ∈ N 2
µ̄ (T,Z;H) and

X (t) :=

ˆ
]0,t]

ˆ
Z

Φ (s, z) µ̄ (ds, dz) , t > 0.

Then
[X]t =

ˆ
]0,t]

ˆ
Z
‖Φ (s, z) ‖2H µ (ds, dz) .

Proof. [Ste12, Corollary 2.23]
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2. Main Theorem

In this chapter we will formulate and prove the main theorem of this work. Our main
reference is [BLZ11].

2.1. Setting and Assumptions

Let (H, 〈·, ·〉H) be a separable real Hilbert space identified with its dual space H∗ by the
Riesz isomorphism. Let V be a real reflexive Banach space with dual space V ∗, such that
V is continuously embedded into H, i.e. there exists C̄ > 0 with

‖v‖H 6 C̄‖v‖V for all v ∈ V,

and such that V is dense in H. We call (V,H, V ∗) a Gelfand triple. It follows thatH∗ ⊂ V ∗
continuously and densly (cf. [Zei90, Proposition 23.13]) and also

V ⊂ H ≡ H∗ ⊂ V ∗

continuously and densly. If V ∗〈·, ·〉V denotes the duality between V and V ∗, then we have

V ∗〈u, v〉V = 〈u, v〉H for all u ∈ H, v ∈ V.

Note that V ∗ is separable since H ⊂ V ∗ continuously and densly and hence this is true for
V .
Let (Ω,F , P ) be a probability space with normal filtration (Ft), t > 0. Let (Z,Z,m) be
a measurable space with a σ-finite measure m. As in Section 1.2 we fix a stationary (Ft)-
Poisson point process p on Z and (Ω,F , P ). The compensated Poisson random measure is
given by

µ̄ (t, B) = µ (t, B)− tm (B) , t > 0, B ∈ Z,

where µ̄ = µ̄p and µ = µp. Let U be another separable Hilbert space and let (Wt)t>0 be a
U -valued cylindrical Wiener process on the probability space (Ω,Ft, P ). Let 0 < T < ∞
be fixed.
We consider the stochastic partial differential equation of the following type

dX (t) =A (t,X (t)) dt+B (t,X (t)) dW (t)

+

ˆ
Z
f (t,X (t−) , z) µ̄ (dt,dz) ,

X (0) =X0,

(2.1.1)
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Chapter 2. Main Theorem

where X0 is an F0-measurable random variable. We consider the operators

A : [0, T ]× Ω× V → V ∗,

B : [0, T ]× Ω× V → L2 (U,H) ,

f : [0, T ]× Ω× V × Z → H,

where
(
L2 (U ;H) , ‖·‖L2

)
denotes the space of Hilbert-Schmidt operators from U to H.

For simplicity we write A (t, v) for the mapping ω 7→ A (t, ω, v) and analogously for B and
f . The operators A and B are both assumed to be progressively measurable, i.e. for all
t ∈ [0, T ] these maps restricted to [0, t] × Ω × V are B ([0, t]) ⊗ Ft ⊗ B (V )-measurable
where B denotes the Borel-σ-algebra. f is assumed to be a P ⊗ B (V ) ⊗ Z-measurable
function, where P is the predictable σ-algebra which is generated by all left-continuous
and F-adapted real-valued processes on [0, T ]× Ω.
We assume that there exist constants

α > 1, β > 0,

θ > 0, K > 0,

a non-negative, F-adapted process (Ft)t∈[0,T ] such that F ∈ L1 ([0, T ]× Ω,dt⊗ P ;R) and
a measurable, hemicontinuous function % : V → [0,∞), which is locally bounded in V .
Furthermore we assume that these constants and functions fulfill the following conditions
for all v, v1, v2 ∈ V , ω ∈ Ω and all t ∈ [0, T ]:

(A1) Hemicontinuity. The map

s 7→ V ∗〈A (t, v1 + sv2) , v〉V

is continuous in R.

(A2) Local monotonicity.

2 V ∗〈A (t, v1)−A (t, v2) , v1 − v2〉V + ‖B (t, v1)−B (t, v2)‖2L2

+

ˆ
Z
‖f (t, v1, z)− f (t, v2, z)‖2H m (dz) 6 (Ft + % (v2)) ‖v1 − v2‖2H .

(A3) Coercivity.

2 V ∗〈A (t, v) , v〉V + ‖B (t, v)‖2L2
+ θ ‖v‖αV 6 Ft +K‖v‖2H .

(A4) Growth.

‖A (t, v)‖
α
α−1

V ∗ 6 (Ft +K‖v‖αV )
(

1 + ‖v‖βH
)
.

2.1.1 Definition (Solution). A solution to (2.1.1) is an Ft-adapted, H-valued, càdlàg
process (Xt)t∈[0,T ], if for its dt⊗ P -equivalent class X̄ the following conditions hold:
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2.2. Formulation of the Theorem

(i) P -a.s. we have X̄ ∈ Lα ([0, T ]× Ω,dt⊗ P ;V ) ∩ L2 ([0, T ]× Ω, dt⊗ P ;H).

(ii) The following equality holds P -a.s. for all t ∈ [0, T ]:

X (t) = X0 +

ˆ t

0
A
(
s, X̄ (s)

)
ds+

ˆ t

0
B
(
s, X̄ (s)

)
dW (s)

+

ˆ t

0

ˆ
Z
f
(
s, X̄ (s−) , z

)
µ̄ (ds, dz) .

The integrability of all occuring integrals is required.

2.1.2 Remark. Although A is an V ∗-valued process by definition, we will see in Proposition
2.3.10 that the V ∗-valued Bochner integral with respect to dt will become H-valued.

Our main aim in this chapter will be to establish existence and uniqueness of strong
solutions to (2.1.1) in the sense of Definition 2.1.1.

2.2. Formulation of the Theorem

Suppose all conditions and assumptions from Section 2.1 hold. Let CBDG > 0 be the
generic constant from the Burkholder-Davis-Gundy inequality D.5 (i) in case p = 1 and
define

Γ := Γ (θ, β, CBDG)

:= θ
β + 2

2

[
(β + 2)

(
β +

3

2
(β + 2)C2

BDG + 2β+2 + 1

)
− 3 · 2β+1

]−1

. (2.2.1)

Then Γ > 0 because θ, CBDG > 0, β > 0 and (β + 2) 2β+2 = 2 (β + 2) 2β+1 > 4 · 2β+1 >
3 · 2β+1. We can now formulate the main theorem of this work.

2.2.1 Theorem. Suppose that conditions (A1) - (A4) are satisfied and that F ∈ L
β+2

2 ([0, T ]×
Ω, dt×P ). Suppose there exist constants 0 6 γ < θ β+2

2 ·
[
(β + 2) (β + 1) + 2β+1 (2β + 1)

]−1

and C > 0 such that

‖B (t, v)‖2L2
+

ˆ
Z
‖f (t, v, z) ‖2H m (dz) 6 C

(
1 + Ft + ‖v‖2H

)
+ γ‖v‖αV , (B1)

ˆ
Z
‖f (t, v, z) ‖β+2

H m (dz) 6 C

(
1 + F

β+2
2

t + ‖v‖β+2
H

)
+ γ‖v‖βH‖v‖

α
V , (B2)

and let % be such that

% (v) 6 C (1 + ‖v‖αV )
(

1 + ‖v‖βH
)

(B3)

for every 0 6 t 6 T , ω ∈ Ω and v ∈ V . Then equation (2.1.1) has a solution (Xt)t∈[0,T ]

for every initial value X0 ∈ Lβ̄ (Ω,F0, P ;H), where β̄ > β + 2. Furthermore,
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Chapter 2. Main Theorem

(i) there exists a constant C̃ = C̃ (p, γ, θ, C,K, T ) > 0 such that

sup
t∈[0,T ]

E
[
‖X (t) ‖β+2

H

]
6 C̃

(
1 + E

[
‖X0‖β+2

H

]
+ E

[ˆ T

0
F
β+2

2
t dt

])
.

(ii) if 0 6 γ < Γ, then there exists a constant Ĉ = Ĉ (p, γ, θ, C,CBDG,K, T ) > 0 such
that

E

[
sup
t∈[0,T ]

‖X (t) ‖β+2
H

]
6 Ĉ

(
1 + E

[
‖X0‖β+2

H

]
+ E

[ˆ T

0
F
β+2

2
t dt

])
and the solution X = (Xt)t∈[0,T ] is unique.

Let us do a short discussion on this theorem and its assumptions in contrast to the familiar
results in [BLZ11, LR10].

2.2.2 Remark.
(i) Although stated otherwise in [BLZ11, Theorem 1.2], the claimed result for uniqueness

of the solution X = (Xt)t∈[0,T ] in the case when 2.2.1 (ii) does not hold, i.e. γ > Γ,
cannot be achieved. We will see in the proof of uniqueness in Section 2.4 that we
need Corollary 2.3.13 (iii), which only holds for γ < Γ.

(ii) Contrary to the statement in [BLZ11, Theorem 1.2], we do not state in 2.2.1 (i) and
(ii) that

E
[ˆ T

0
‖X (t)‖αV ‖X (t)‖βH dt

]
is bounded. Although we will see that this term is bounded in case of the finite
dimensional equation, typical convergence arguments are insufficient to show that
the term above is also bounded in the infinite dimensional case.

(iii) The given bound on γ in Theorem 2.2.1 is of a technical origin, as one will see in
the proof of Lemma 2.3.5 (ii). One can use

γ <
θ

2

[
(β + 2) + 2β+2

]−1

as a better looking, but smaller bound in Theorem 2.2.1, because

(β + 2) (β + 1) + 2β+1 (2β + 1) 6 (β + 2)2 + 2β+1 (2β + 4) = (β + 2)2 + (β + 2) 2β+2

implies that

γ <
θ

2

[
(β + 2) + 2β+2

]−1
= θ

β + 2

2

[
(β + 2)2 + (β + 2) 2β+2

]−1

6 θ
β + 2

2
·
[
(β + 2) (β + 1) + 2β+1 (2β + 1)

]−1

and so the Theorem holds.
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2.2. Formulation of the Theorem

(iv) We only know that CBDG is generic. Since no information about its calculation can
be found in [Kal97], we cannot calculate Γ explicity here. But from [LS89] we know
that CBDG 6 3, since we need it for p = 1.

(v) Condition (B2) is weaker than condition (1.3) in [BLZ11, Theorem 1.2], because we
allow

´
Z ‖f (t, v, z) ‖β+2

H m (dz) also to be bounded by ‖v‖βH ‖v‖
α
V . As a consequence

we cannot choose γ < ∞ to be arbitrary if β = 0, but we can still choose γ < θ if
β = 0 (cf. Remark 2.3.6 (ii)) and our bound on γ becomes smaller.

Anyway, the claimed bound of γ < θ
2β in [BLZ11, Theorem 1.2] is not sufficient

for β ∈
(
0, 1

2

)
to show existence with the methods used therein. The reason lies

in the missing analogue of our Lemma 2.3.5 (i) in [BLZ11], which has not been
worked out there. We can see in the proof that we always need γ < θ to apply
Gronwall’s inequality, which is e.g. obviously not true for β = 1

4 (then we could
choose θ < γ < 2θ).

Another reason for weakening condition (B2) here and therefore losing a higher bound
on γ is the fact, that all the examples in [BLZ11] do not even involve γ, i.e. γ = 0
there. In Chapter 3, we are able to use this bound to claim more general conditions.

(vi) We use a weaker local monotonicity condition (A2) here. For condition (H2) in
[BLZ11] or [LR10] the bound is given by

(K + % (v2)) ‖v1 − v2‖2H

in (A2). Here, we allow (Ft)t∈[0,T ] to be part of the bound instead. This generalization
is inspired from [LR14], which is not published yet.

(vii) In a special case, namely for β = 0, α <
[
1− 5θ

16K

]−1 and 5θ < 16K, we can deduce
(B1) from (A3) and (A4). Indeed, both (A3) and (A4) imply

‖B (t, v)‖2L2
6 −θ ‖v‖αV + Ft +K‖v‖2H + 2

(
(Ft +K‖v‖αV )

(
1 + ‖v‖βH

))α−1
α
.

By Young’s inequality we see that(
(Ft +K‖v‖αV )

(
1 + ‖v‖βH

))α−1
α

6
1

α
+
α− 1

α

(
Ft

(
1 + ‖v‖βH

)
+K ‖v‖αV

(
1 + ‖v‖βH

))
.

Therefore

‖B (t, v)‖2L2
6

2

α
+ Ft

[
1 +

2 (α− 1)

α

(
1 + ‖v‖βH

)]
+ ‖v‖αV

[
K

2 (α− 1)

α

(
1 + ‖v‖βH

)
− θ
]

+K ‖v‖2H .

Hence, since β = 0,

‖B (t, v)‖2L2
6

2

α
+ Ft

[
1 +

4 (α− 1)

α

]
+ ‖v‖αV

[
K

4 (α− 1)

α
− θ
]

+K ‖v‖2H .
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Chapter 2. Main Theorem

So, if θ + γ > 4K α−1
α and if C > max

{
2
α ;K; 1 + 4α−1

α

}
, then (A3) and (A4) give

us a stronger estimate than (B1):

‖B (t, v)‖2L2
6 C

(
1 + Ft + ‖v‖2H

)
+ γ ‖v‖αV .

Furthermore, since β = 0, we can drop (B1) completely then, since (B2) covers the
estimate for f . It remains to show that there exists such a γ with 4K α−1

α −θ 6 γ < θ
4 .

By some calculation, this is true for 5θ < 16K and

α <

[
1− 5θ

16K

]−1

.

The proof of Theorem 2.2.1 is split into an existence and a uniqueness part. The existence
part is based on the so called Galerkin approximation. First we will consider equation
(2.1.1) in a finite dimensional space with dimension n ∈ N. Then a solution to this
finite dimensional equation can be found, but instead of proving this fact, we refer to the
literature. However, we will see that this solution fulfills some apriori estimates under
our assumptions and this will lead to Lemma 2.3.7 below. There we will see that each
integrand of (2.1.1) in the finite dimensional case convergences weakly as n→∞.
These limiting processes will be used to construct a solution to (2.1.1) in the general
case. Section 2.3.2 deals with an Itô formula for this process and finally we will see that
the integrands of our constructed process are almost everywhere equal to those given in
(2.1.1). Hence a solution will be constructed, since all regularity estimates and integrability
conditions will follow from conditions (A1)–(A4) and (B1)–(B3).
Section 2.4 deals with the matter of uniqueness. Contrary to the existence part, this
one is quite easier. However, as already mentioned in the introduction, we will see that
the stronger condition on γ in Theorem 2.2.1 (ii) is mandatory to obtain uniqueness of a
solution.

Let us start with the proof of Theorem 2.2.1. For the rest of this chapter we set p := β+2.

Notation. For any given q > 1 we denote by q′ its dual such that 1
q + 1

q′ = 1, i.e. q′ = q
q−1 .

We assume that for the initial valueX0 from Theorem 2.2.1 we haveX0 ∈ Lβ+2 (Ω,F0, P ;H)
without loss of generality. This follows from the generalized Hölder’s inequality.

2.3. Proof of the Main Theorem – Existence

The proof of existence is based on the Galerkin approximation and therefore, we will first
consider a finite dimensional version of equation (2.1.1).
Let n ∈ N be arbitrary. We will now assume that {e1, e2, . . . } ⊂ V is an orthonormal basis
of H, which exists since V ⊂ H is dense and continuous and such that Span (e1, e2, . . . ) is
dense in V . Define the finite dimensional space

Hn := Span (e1, e2, . . . , en)
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2.3. Proof of the Main Theorem – Existence

and the projection

Pn : V ∗ → Hn, v 7→ Pn (v) :=
n∑
i=1

V ∗〈v, ei〉V ei.

For u ∈ V , v ∈ Hn and t ∈ [0, T ] we obtain

V ∗〈PnA (t, u) , v〉V = 〈PnA (t, u) , v〉H = V ∗〈A (t, u) , v〉V .

Now let {g1, g2, . . . } be an orthonormal basis of U and P̃n the orthogonal projection onto
Span (g1, g2, . . . , gn) in U . Set

W
(n)
t :=

n∑
i=1

〈Wt, gi〉U gi = P̃nWt.

2.3.1. Finite dimensional equation

The finite dimensional version of equation (2.1.1) in Hn can now be written as

dY (t) =PnA (t, Y (t)) dt+ PnB (t, Y (t)) dW
(n)
t

+

ˆ
Z
Pnf (t, Y (t−) , z) µ̄ (dt,dz) ,

Y (0) =PnX0,

(2.3.1)

where t ∈ [0, T ] and X0 ∈ Lβ+2 (Ω,Ft, P ;H) is the same initial value as in Theorem 2.2.1.

2.3.1 Proposition. Suppose conditions (A1)–(A4), (B1)–(B3) hold. Then equation (2.3.1)
has a strong solution, i.e. there exists an (Ft)-adapted, Hn-valued, càdlàg process

(
X

(n)
t

)
t∈[0,T ]

such that we have

X
(n)
t =PnX0 +

ˆ t

0
PnA

(
t,X(n)

s

)
ds+

ˆ t

0
PnB

(
s,X(n)

s

)
dW (n)

s

+

ˆ t

0

ˆ
Z
Pnf

(
s,X

(n)
s− , z

)
µ̄ (ds, dz) .

(2.3.2)

P -a.s. for all t ∈ [0, T ].

Proof. See [ABW10, Theorem 3.1].

2.3.2 Remark. The result in Proposition 2.3.1 can also be retrieved from [GK80, Theorem
1].

The next Lemma is an important auxiliary result and also known as the Itô formula.
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Chapter 2. Main Theorem

2.3.3 Lemma (Itô’s formula). Let 2 6 q < ∞ and, for fixed n ∈ N, let (Xt)t∈[0,T ] the
stochastic process given in (2.3.2). Then

‖Xt‖qH = ‖X0‖qH + q (q − 2)

ˆ t

0
‖Xs‖q−4

H

∥∥∥(PnB (s,Xs) P̃n

)
∗Xs−

∥∥∥2

H
ds

+
q

2

ˆ t

0
‖Xs−‖p−2

H

(
2 V 〈A (s,Xs) , Xs−〉V ∗ +

∥∥∥PnB (s,Xs) P̃n

∥∥∥2

L2

)
ds

+q

(ˆ t

0
‖Xs−‖q−2

H 〈Xs−, PnB (s,Xs) dWs〉H +

ˆ t

0

ˆ
Z
‖Xs−‖q−2

H 〈Xs−, Pnf (s,Xs−, z)〉H µ̄ (ds,dz)

)
+

ˆ t

0

ˆ
Z

(
‖Xs− + Pnf (s,Xs−, z)‖qH − ‖Xs−‖qH − q ‖Xs−‖q−2

H 〈Xs−, Pnf (s,Xs, z)〉H
)
µ (ds, dz)

P -a.s. for all t ∈ [0, T ].

Proof. Apply [IW81, Theorem 5.1] to the function x 7→ ‖x‖pH restricted to Hn.

2.3.4 Remark. Itô’s formula – or Itô’s lemma – for so called Itô-Lévy processes in finite
dimensions is a well known result in the literature. It can also be found in [Mé82, Theo-
rem 27.1] for general semimartingales. Without claiming to give a full list, let us further
mention [App09, Theorem 4.4.7], [NØP09, Theorem 9.5] and [ABW10, Equation (2.16)].

Now let us do some a priori estimates on
(
X

(n)
t

)
t∈[0,T ]

before we begin to construct a

solution to (2.1.1). Recall that we set p := β + 2.

2.3.5 Lemma. Suppose conditions (A1)–(A4) and (B1)–(B3) hold and that F ∈ L
p
2 ([0, T ]×

Ω,dt× P ). Let
(
X

(n)
t

)
t∈[0,T ]

, n ∈ N, be a solution to (2.3.1) given by Propositon 2.3.1.

(i) There exists a constant C1 = C1

(
p, γ, θ, C,K, T, ‖X0‖Lp(Ω;H) , ‖F‖L p2 (Ω×[0,T ])

)
> 0

such that

sup
t∈[0,T ]

E
[∥∥∥X(n)

t

∥∥∥2

H

]
+ E

[ˆ T

0

∥∥∥X(n)
t

∥∥∥α
V

dt

]
6 C1 (2.3.3)

for all n ∈ N.

(ii) There exists a constant C2 = C2 (p, γ, θ, C,K, T ) > 0 such that

sup
t∈[0,T ]

E
[∥∥∥X(n)

t

∥∥∥p
H

]
+ E

[ˆ T

0

∥∥∥X(n)
t

∥∥∥p−2

H

∥∥∥X(n)
t

∥∥∥α
V

dt

]

6 C2

(
E
[
‖X0‖pH

]
+ E

[ˆ T

0
F
p
2
t dt

]) (2.3.4)

for all n ∈ N.
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2.3. Proof of the Main Theorem – Existence

(iii) If 0 6 γ < Γ, then there exists a constant C3 = C3 (p, γ, θ, C,CBDG,K, T ) > 0 such
that

E

[
sup
t∈[0,T ]

∥∥∥X(n)
t

∥∥∥p
H

]
+ E

[ˆ T

0

∥∥∥X(n)
t

∥∥∥p−2

H

∥∥∥X(n)
t

∥∥∥α
V

dt

]

6 C3

(
E
[
‖X0‖pH

]
+ E

[ˆ T

0
F
p
2
t dt

]) (2.3.5)

for all n ∈ N.

2.3.6 Remark.

(i) In the proof of 2.3.5 (ii) and (iii) (and also Lemma 2.3.7 (ii) to (iv)) we heavily use
Young’s inequality with q = p

p−2 . At first sight this is not possible in case that p = 2,
i.e. β = 0. But we use it always in the same situation, namely

ξp−2ζ 6
p− 2

p
ξp +

2

p
ζ
p
2

for ξ, ζ ∈ R, and this inequality holds true even if p = 2.

(ii) One may also note that 2.3.5 (i) and (ii) are identical if p = 2. But we can see
in steps (i).6 and (ii).7 of the proof that 2.3.5 (i) allows us to use a higher bound,
namely γ < θ instead of γ < 1

4θ as in the proof of (ii). This is because in the proof
of (i) we use the second part from Lemma C.1 and not the first part.

Proof. First we need to introduce a stopping time τ (n)
R for given n ∈ N and R > 0, defined

by

τ
(n)
R = inf

{
t > 0

∣∣∣ ∥∥∥X(n)
t

∥∥∥
H
> R

}
∧ T.

By Theorem D.4 we know that τ (n)
R is a stopping time. Furthermore we have limR→∞ τ

(n)
R =

T P -a.s. Since X(n)
t takes values in the finite dimensional space Hn ⊂ V and because

V ⊂ H continuously, we have

∥∥∥X(n)
t

∥∥∥
H

6 R,
∥∥∥X(n)

t

∥∥∥
V
6 C̄R, for all t ∈

[
0, τ

(n)
R

]
, n ∈ N. (2.3.6)

Notation. To avoid notational complexity we set t̂ := t̂ (t, n,R) := t ∧ τ (n)
R for t ∈ [0, T ].

Step (i).1. Let us apply Itô’s formula 2.3.3 to the process X(n)
t and for q = 2 in there.
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Then P -a.s. for all t ∈ [0, T ] we have∥∥∥X(n)
t

∥∥∥2

H
=
∥∥∥X(n)

0

∥∥∥2

H
+

ˆ t

0

(
2
V ∗

〈
A
(
s,X(n)

s

)
, X

(n)
s−

〉
V

+
∥∥∥PnB (s,X(n)

s

)
P̃n

∥∥∥2

L2

)
ds

+ 2

ˆ t

0

〈
X

(n)
s− , PnB

(
s,X(n)

s

)
dW (n)

s

〉
H

+ 2

ˆ t

0

ˆ
Z

〈
X

(n)
s− , Pnf

(
s,X

(n)
s− , z

)〉
H
µ̄ (ds, dz)

+

ˆ t

0

ˆ
Z

(∥∥∥X(n)
s− + Pnf

(
s,X

(n)
s− , z

)∥∥∥2

H
−
∥∥∥X(n)

s−

∥∥∥2

H

)
µ (ds, dz)

− 2

ˆ t

0

ˆ
Z

〈
X

(n)
s− , Pnf

(
s,X(n)

s , z
)〉

H
µ (ds, dz)

=:
∥∥∥X(n)

0

∥∥∥2

H
+H1 (t) + 2H2 (t) + 2H3 (t) +H4 (t)− 2H5 (t) .

(2.3.7)

Step (i).2. Applying (A3) to H1

(
t̂
)
yields to

H1

(
t̂
)

=

ˆ t̂

0

(
2
V ∗

〈
A
(
s,X(n)

s

)
, X

(n)
s−

〉
V

+
∥∥∥PnB (s,X(n)

s

)
P̃n

∥∥∥2

L2

)
ds

(A3)
6
ˆ t̂

0
Fs ds+K

ˆ t̂

0

∥∥∥X(n)
s

∥∥∥2

H
ds− θ

ˆ t̂

0

∥∥∥X(n)
s

∥∥∥α
V

ds.

Step (i).3. We come to H2

(
t̂
)
. Let us note that we have, for all t ∈ [0, T ] and v ∈ V ,

‖B (t, v)‖2L2
6 ‖B (t, v)‖2L2

+

ˆ
Z
‖f (t, v, z)‖2H m (dz)

(B1)
6 C

(
1 + Ft + ‖v‖2H

)
+ γ ‖v‖αV .

(2.3.8)

The stochastic integral
´ t̂

0

〈
X

(n)
s− , PnB

(
s,X

(n)
s

)
dW

(n)
s

〉
H

is well-defined as a contiuous,

real-valued, local martingale, since as a càdlàg, Ft-adapted process X(n)
t− is predictable and

E

[ˆ t̂

0

∥∥∥PnB (s,X(n)
s

)∥∥∥2

L2

ds

]
(2.3.8)
6 E

[ˆ t̂

0

(
C

(
1 + Ft +

∥∥∥X(n)
s

∥∥∥2

H

)
+ γ

∥∥∥X(n)
s

∥∥∥α
V

)
ds

]
<∞,

because from (2.3.6) we see that
∥∥∥X(n)

s

∥∥∥2

H
< ∞ and

∥∥∥X(n)
s

∥∥∥α
V
< ∞ and we have F ∈

L1 ([0, T ]× Ω,dt⊗ P ;R). Hence we deduce E
[
H2

(
t̂
)]

= 0.

Step (i).4. Let us show that E
[
H3

(
t̂
)]

= 0. Let Φ (s, z) :=
〈
X

(n)
s− , Pnf

(
s,X

(n)
s− , z

)〉
H
,

then the process s 7→ Φ (s, ·) is predictable, since f is predictable. From Proposition 1.2.2
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and 1.2.3 we deduce that H3

(
t̂
)
is a martingale. Indeed, for all t ∈ [0, T ] and v ∈ V , we

have by the Cauchy-Schwarz inequality and condition (B1)

E

[ˆ t̂

0

ˆ
Z

∣∣∣〈X(n)
s− , Pnf

(
s,X

(n)
s− , z

)〉
H

∣∣∣2m (dz) ds

]

6E

[ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥2

H

ˆ
Z

∥∥∥Pnf (s,X(n)
s− , z

)∥∥∥2

H
m (dz) ds

]
(B1)
6 E

[ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥2

H

(
C

(
1 + Fs +

∥∥∥X(n)
s−

∥∥∥2

H

)
+ γ

∥∥∥X(n)
s−

∥∥∥α
V

)
ds

]
<∞,

because by (2.3.6) the V - andH-norms ofX(n)
s− are bounded and Fs ∈ L1 ([0, T ]× Ω, dt⊗ P ;R).

Step (i).5. As the last step of preparation we want to estimate E
[
H4

(
t̂
)
− 2H5

(
t̂
)]
.

Proposition 1.2.7 allows us to change the integrator from µ (ds, dz) to m (dz) ds and then
we apply Lemma C.1:

E
[
H4

(
t̂
)
− 2H5

(
t̂
)]

6
∣∣E [H4

(
t̂
)
− 2H5

(
t̂
)]∣∣ 6 E

[∣∣H4

(
t̂
)
− 2H5

(
t̂
)∣∣]

6 E

[ˆ t

0

ˆ
Z

∣∣∣∣ ∥∥∥X(n)
s− + Pnf

(
s,X

(n)
s− , z

)∥∥∥2

H
−
∥∥∥X(n)

s−

∥∥∥2

H

− 2
〈
X

(n)
s− , Pnf

(
s,X(n)

s , z
)〉

H

∣∣∣∣µ (ds, dz)

]

1.2.7
= E

[ ˆ t

0

ˆ
Z

∣∣∣∣ ∥∥∥X(n)
s− + Pnf

(
s,X

(n)
s− , z

)∥∥∥2

H
−
∥∥∥X(n)

s−

∥∥∥2

H

− 2
〈
X

(n)
s− , Pnf

(
s,X(n)

s , z
)〉

H

∣∣∣∣m (dz) ds

]

C.1
= E

[ˆ t̂

0

ˆ
Z

∥∥∥f (s,X(n)
s− , z

)∥∥∥2

H
m (dz) ds

]
.

Therefore, by (B1), we know that, for all t ∈ [0, T ],

E
[
H4

(
t̂
)
− 2H5

(
t̂
)]

6 E

[ˆ t̂

0

ˆ
Z

∥∥∥f (s,X(n)
s− , z

)∥∥∥2

H
m (dz) ds

]
(B1)
6 CT + C E

[ˆ t̂

0
Fs ds

]
+ C E

[ˆ t̂

0

∥∥∥X(n)
s

∥∥∥2

H
ds

]
+ γ E

[ˆ t̂

0

∥∥∥X(n)
s

∥∥∥α
V

ds

]
.

Step (i).6. The results (i).2 to (i).5 combined and used in the stopped version of (2.3.7)
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in expectation delivers, for all t ∈ [0, T ],

E
[∥∥∥X(n)

t̂

∥∥∥2

H

]
=E

[∥∥∥X(n)
0

∥∥∥2

H

]
+ E

[
H1

(
t̂
)]

+ 2E
[
H2

(
t̂
)]︸ ︷︷ ︸

=0

+2E
[
H3

(
t̂
)]︸ ︷︷ ︸

=0

+E
[
H4

(
t̂
)
− 2H5

(
t̂
)]

6E
[
‖X0‖2H

]
+ (1 + C)E

[ˆ T

0
Fs ds

]
+ (C +K)E

[ˆ t̂

0

∥∥∥X(n)
s

∥∥∥2

H
ds

]

+ CT + (γ − θ)E

[ˆ t̂

0

∥∥∥X(n)
s

∥∥∥α
V

ds

]
.

(2.3.9)

Here we used that, since X(n)
0 is Hn-valued, we have

∥∥∥X(n)
0

∥∥∥
H

6 ‖X0‖H and that, because
F is non-negative and hence the integral with respect to ds is increasing in time, we get
E
[´ t̂

0 Fs ds
]
6 E

[´ T
0 Fs ds

]
. If p > 2 then we observe by Hölder’s inequality

E
[
‖X0‖2H

]
6 E

[
‖X0‖pH

] 2
p · E [1]

p−2
p = E

[
‖X0‖pH

] 2
p <∞

and

(1 + C)E
[ˆ T

0
Fs ds

]
6 (1 + C)T

p−2
p E

[ˆ T

0
F
p
2
s ds

] 2
p

<∞.

So we set Θ := E
[
‖X0‖pH

] 2
p + (1 + C)T

p−2
p E

[´ T
0 F

p
2
s ds

] 2
p

+ CT . We also have Θ < ∞.

In the case p = 2 we see immediately that Θ = E
[
‖X0‖2H

]
+ 2E

[´ T
0 Fs ds

]
+ CT < ∞

by assumption. Since γ < θ p2
[
p (p− 1) + 2p−1 (2p− 3)

]−1 p>2
6 θ p

2p < θ by assumption, we
have θ − γ > 0 and we bring the last summand in (2.3.9) to the left hand side and get by
Fubini’s theorem

ϕ
(
t̂
)

+ (θ − γ)ψ
(
t̂
)
6 Θ +

ˆ t̂

0
(C +K)ϕ (s) ds

with ϕ (t) = E
[∥∥∥X(n)

t

∥∥∥2

H

]
, ψ (t) = E

[∥∥∥X(n)
s

∥∥∥α
V

]
. Furthermore we have C + K > 0 and

ψ > 0. Therefore we can apply Gronwall’s lemma B.5 on

ϕ
(
t̂
)

+ (θ − γ)ψ
(
t̂
)
6 Θ +

ˆ t̂

0
(C +K) (ϕ (s) + (θ − γ)ψ (s)) ds

and we get

ϕ
(
t̂
)

+ (θ − γ)ψ
(
t̂
)
6 Θe(C+K)t̂ 6 Θe(C+K)T .

Then ϕ
(
t̂
)
6 Θe(C+K)T and hence sups∈[0,t̂] ϕ (s) 6 Θe(C+K)T .

ψ
(
t̂
)
6

1

θ − γ
(
ϕ
(
t̂
)

+ (θ − γ)ψ
(
t̂
))

6
Θ

θ − γ
e(C+K)T
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also holds true. Resubstitution gives us

sup
s∈[0,t̂]

E
[∥∥∥X(n)

s

∥∥∥2

H

]
+ E

[∥∥∥X(n)

t̂

∥∥∥α
V

]

6

(
1 +

1

θ − γ

)
e(C+K)T

E
[
‖X0‖pH

] 2
p + 2T

p−2
p E

[ˆ T

0
F
p
2
s ds

] 2
p

+ CT

 := C1

(2.3.10)

for all t ∈ [0, T ] and n ∈ N and with C1 = C1

(
p, γ, θ, C,K, T, ‖X0‖Lp(Ω;H) , ‖F‖L p2 (Ω×[0,T ])

)
<

∞. The right hand side is independent of t, R, n and the stopping time τ (n)
R .

Step (i).7. Now, we apply the monotone convergence theorem. (2.3.10) holds for T ∈
[0, T ] and we have τ (n)

R → T as R→∞ P -a.s. Then we have

sup
s∈[0,T ]

E
[∥∥∥X(n)

s

∥∥∥2

H

]
+ E

[∥∥∥X(n)
T

∥∥∥α
V

]
= lim
R→∞

sup
s∈

[
0,T∧τ (n)

R

]E
[∥∥∥X(n)

s

∥∥∥2

H

]
+ E

[
lim
R→∞

∥∥∥∥X(n)

T∧τ (n)
R

∥∥∥∥α
V

]

= lim
R→∞

 sup
s∈

[
0,T∧τ (n)

R

]E
[∥∥∥X(n)

s

∥∥∥2

H

]
+ E

[∥∥∥∥X(n)

T∧τ (n)
R

∥∥∥∥α
V

]
(2.3.10)
6 C1

for all n ∈ N.
We come to the proof of 2.3.5 (ii).
Step (ii).1. We apply Itô’s formula 2.3.3 to the process X(n)

t with q = p. Then P -a.s. for
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all t ∈ [0, T ] we have

∥∥∥X(n)
t

∥∥∥p
H

=
∥∥∥X(n)

0

∥∥∥p
H

+ p (p− 2)

ˆ t

0

∥∥∥X(n)
s−

∥∥∥p−4

H

∥∥∥(PnB (s,X(n)
s

)
P̃n

)
∗X(n)

s−

∥∥∥2

H
ds

+
p

2

ˆ t

0

∥∥∥X(n)
s−

∥∥∥p−2

H

(
2
V ∗

〈
A
(
s,X(n)

s

)
, X

(n)
s−

〉
V

+
∥∥∥PnB (s,X(n)

s

)
P̃n

∥∥∥2

L2

)
ds

+ p

ˆ t

0

∥∥∥X(n)
s−

∥∥∥p−2

H

〈
X

(n)
s− , PnB

(
s,X(n)

s

)
dW (n)

s

〉
H

+ p

ˆ t

0

ˆ
Z

∥∥∥X(n)
s−

∥∥∥p−2

H

〈
X

(n)
s− , Pnf

(
s,X

(n)
s− , z

)〉
H
µ̄ (ds, dz)

+

ˆ t

0

ˆ
Z

(∥∥∥X(n)
s− + Pnf

(
s,X

(n)
s− , z

)∥∥∥p
H
−
∥∥∥X(n)

s−

∥∥∥p
H

)
µ (ds, dz)

− p
ˆ t

0

ˆ
Z

∥∥∥X(n)
s−

∥∥∥p−2

H

〈
X

(n)
s− , Pnf

(
s,X(n)

s , z
)〉

H
µ (ds, dz)

=:
∥∥∥X(n)

0

∥∥∥p
H

+ p (p− 2) I1 (t) +
p

2
I2 (t) + pI3 (t) + pI4 (t) + I5 (t)− pI6 (t) .

(2.3.11)

Step (ii).2. We use (2.3.8) for I1

(
t̂
)
.

I1

(
t̂
)

=

ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p−4

H

∥∥∥(PnB (s,X(n)
s

)
P̃n

)
∗X(n)

s−

∥∥∥2

H
ds

6
ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p−4

H

∥∥∥(PnB (s,X(n)
s

)
P̃n

)∥∥∥2

H

∥∥∥X(n)
s

∥∥∥2

H
ds

(2.3.8)
6

ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p−2

H

[
C

(
1 + Fs +

∥∥∥X(n)
s

∥∥∥2

H

)
+ γ

∥∥∥X(n)
s

∥∥∥α
V

]
ds

= C

ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p−2

H
Fs ds+ C

ˆ t

0

∥∥∥X(n)
s−

∥∥∥p
H

ds+ γ

ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p−2

H

∥∥∥X(n)
s

∥∥∥α
V

ds

+C

ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p−2

H
ds.

The first summand in the last line can be splitted by Young’s inequality with q = p
p−2 into

p−2
p

´ t̂
0

∥∥∥X(n)
s−

∥∥∥p
H

ds+ 2
pC

p
2

´ t̂
0 F

p
2
s ds and the last summand into 2T

p C
p
2 + p−2

p

´ t̂
0

∥∥∥X(n)
s−

∥∥∥p
H

ds.
Then we obtain

I1

(
t̂
)
6 γ

ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p−2

H

∥∥∥X(n)
s

∥∥∥α
V

ds+

(
C +

2 (p− 2)

p

)ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p
H

ds+
2

p
C
p
2

ˆ t̂

0
F
p
2
s ds+

2T

p
C
p
2 .
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Step (ii).3. We apply (A3) to I2

(
t̂
)
.

I2

(
t̂
)

=

ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p−2

H

(
2
V ∗

〈
A
(
s,X(n)

s

)
, X

(n)
s−

〉
V

+
∥∥∥PnB (s,X(n)

s

)
P̃n

∥∥∥2

L2

)
ds

(A3)
6
ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p−2

H

(
Fs +K

∥∥∥X(n)
s−

∥∥∥2

H
− θ

∥∥∥X(n)
s−

∥∥∥α
V

)
ds

=

ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p−2

H
Fs ds+K

ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p
H

ds− θ
ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p−2

H

∥∥∥X(n)
s−

∥∥∥α
V

ds.

As in the step before we split the first summand of the last line by Young’s inequality and
have the following result

I2

(
t̂
)
6 −θ

ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p−2

H

∥∥∥X(n)
s−

∥∥∥α
V

ds+

(
K +

p− 2

p

)ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p
H

ds+
2

p

ˆ t̂

0
F
p
2
s ds.

Step (ii).4. Let us show that Φ (s, z) :=
∥∥∥X(n)

s−

∥∥∥p−2

H

〈
X

(n)
s− , Pnf

(
s,X

(n)
s− , z

)〉
H
∈ N 2

µ̄

(
t̂, Z;R

)
,

then I4

(
t̂
)

=
´ t̂

0

´
Z Φ (s, z) µ̄ (ds, dz) is a real-valued martingale by Proposition 1.2.2 and

1.2.3 and we get E
[
I4

(
t̂
)]

=E
[´ t̂

0

´
Z Φ (s, z) µ̄ (ds, dz)

]
= 0. Since f is predictable, the

process s 7→ Φ (s, ·) is predictable. It remains to show that ‖Φ‖t̂ <∞. By condition (B1)
we get for all t ∈ [0, T ] and v ∈ V

ˆ
Z
‖f (t, v, z)‖2H m (dz)

(B1)
6 C

(
1 + Ft + ‖v‖2H

)
+ γ ‖v‖αV (2.3.12)

and the Cauchy-Schwarz inequality delivers

‖Φ‖2t̂ = E

[ˆ t̂

0

ˆ
Z

∣∣∣∣∥∥∥X(n)
s−

∥∥∥p−2

H

〈
X

(n)
s− , Pnf

(
s,X

(n)
s− , z

)〉
H

∣∣∣∣2 m (dz) ds

]
C.−S.
6 E

[ˆ t̂

0

ˆ
Z

∥∥∥X(n)
s−

∥∥∥2p−4

H

∥∥∥X(n)
s−

∥∥∥2

H

∥∥∥Pnf (s,X(n)
s− , z

)∥∥∥2

H
m (dz) ds

]

= E

[ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥2(p−1)

H

ˆ
Z

∥∥∥Pnf (s,X(n)
s− , z

)∥∥∥2

H
m (dz) ds

]
(2.3.12)
6 E

[ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥2(p−1)

H

(
C

(
1 + Fs +

∥∥∥X(n)
s−

∥∥∥2

H

)
+ γ

∥∥∥X(n)
s−

∥∥∥α
V

)
ds

]
< ∞,

since
∥∥∥X(n)

s−

∥∥∥
V

and
∥∥∥X(n)

s−

∥∥∥
H

are bounded by (2.3.6) and F ∈ L
p
2 ([0, T ]× Ω,dt× P ) .

Step (ii).5. Since, as a càdlàg, Ft-adapted process, X(n)
t− is predictable, the stochastic

integral
´ t̂

0

∥∥∥X(n)
s−

∥∥∥p−2

H

〈
X

(n)
s− , PnB

(
s,X

(n)
s

)
dW

(n)
s

〉
is well-defined as a continuous, real-
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valued, local martingale if Φ (s) :=PnB
(
s,X

(n)
s

)
∈ NW (n)

(
0, t̂
)
.

‖Φ‖t̂ = E

[ˆ t̂

0

∥∥∥PnB (s,X(n)
s

)∥∥∥2

L2

ds

]
(2.3.8)
6 E

[ˆ t̂

0

(
C

(
1 + Ft +

∥∥∥X(n)
s

∥∥∥2

H

)
+ γ

∥∥∥X(n)
s

∥∥∥α
V

)
ds

]
< ∞

as in Step (ii).4. Hence we have E
[
I3

(
t̂
)]

= 0.
Step (ii).6. Now let us come to I5

(
t̂
)
and I6

(
t̂
)
. First, we want to estimate E

[∣∣I5

(
t̂
)
− pI6

(
t̂
)∣∣]

by Lemma C.1. By Proposition 1.2.7 we can replace µ (ds, dz) by m (dz) ds in the integral
and then there exists a constant C4 = C4 (p) such that

E
[∣∣I5

(
t̂
)
− pI6

(
t̂
)∣∣] 6 E

[ˆ t̂

0

ˆ
Z

∣∣∣∣ ∥∥∥X(n)
s− + Pnf

(
s,X

(n)
s− , z

)∥∥∥p
H
−
∥∥∥X(n)

s−

∥∥∥p
H

−p
∥∥∥X(n)

s−

∥∥∥p−2

H

〈
X

(n)
s− , Pnf

(
s,X(n)

s , z
)〉

H

∣∣∣∣ µ (ds, dz)

]

1.2.7
= E

[ˆ t̂

0

ˆ
Z

∣∣∣∣ ∥∥∥X(n)
s−

∥∥∥p−2

H

∥∥∥X(n)
s− + Pnf

(
s,X

(n)
s− , z

)∥∥∥p
H
−
∥∥∥X(n)

s−

∥∥∥p
H

−p
∥∥∥X(n)

s−

∥∥∥p−2

H

〈
X

(n)
s− , Pnf

(
s,X(n)

s , z
)〉

H

∣∣∣∣ m (dz) ds

]
C.1
6 C4 E

[ˆ t̂

0

ˆ
Z

(∥∥∥X(n)
s−

∥∥∥p
H

+
∥∥∥Pnf (s,X(n)

s− , z
)∥∥∥p

H

)
m (dz) ds

]
.

Continuing in the last row of the equation above and using (B2) we now obtain

E
[∣∣I5

(
t̂
)
− pI6

(
t̂
)∣∣]

6C4 E

[ˆ t̂

0

(∥∥∥X(n)
s−

∥∥∥p
H

+ C
(

1 + F
p
2
s +

∥∥∥X(n)
s−

∥∥∥p
H

)
+ γ

∥∥∥X(n)
s−

∥∥∥p−2

H

∥∥∥X(n)
s−

∥∥∥α
V

)
ds

]

6C4 (C + 1)E

[ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p
H

ds

]
+ C · C4 E

[ˆ t̂

0
F
p
2
s ds

]

+ γC4 E

[ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p−2

H

∥∥∥X(n)
s−

∥∥∥α
V

ds

]
+ C · C4T.

Step (ii).7. We apply the expectation to the stopped version of (2.3.11) and use our
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results from the Steps (ii).2 to (ii).6 on it.

E
[∥∥∥X(n)

t̂

∥∥∥p
H

]
=E

[
‖X0‖pH

]
+ p (p− 2)E

[
I1

(
t̂
)]

+
p

2
E
[
I2

(
t̂
)]

+ pE
[
I3

(
t̂
)]︸ ︷︷ ︸

=0

+pE
[
I4

(
t̂
)]︸ ︷︷ ︸

=0

+ E
[
I5

(
t̂
)
− pI6

(
t̂
)]︸ ︷︷ ︸

6|E[I5(t̂)−pI6(t̂)]|6E[|I5(t̂)−pI6(t̂)|]

6E
[
‖X0‖pH

]
+
(

(p (p− 2) + C4) γ − p

2
θ
)
E

[ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p−2

H

∥∥∥X(n)
s

∥∥∥α
V

ds

]

+ C5 E

[ˆ t̂

0

∥∥∥X(n)
s

∥∥∥p
H

ds

]
+ C6 E

[ˆ t̂

0
F
p
2
s ds

]
+
(
C · C4 + 2 (p− 2)C

p
2

)
T,

where

C5 :=

(
p (p− 2)

(
C +

2 (p− 2)

p

)
+
p

2

(
K +

p− 2

p

)
+ C4 (C + 1)

)
and

C6 := 2 (p− 2)C
p
2 + C · C4 + 1.

Here we used that since X(n)
0 is Hn-valued we have

∥∥∥X(n)
0

∥∥∥
H

6 ‖X0‖H . Bringing the
second summand to the left side we get

E
[∥∥∥X(n)

t̂

∥∥∥p
H

]
+

(p
2
θ − (p (p− 2) + C4) γ

)
E

[ˆ t̂

0

∥∥∥X(n)
s

∥∥∥p−2

H

∥∥∥X(n)
s−

∥∥∥α
V

ds

]

6 E
[
‖X0‖pH

]
+ C5 E

[ˆ t̂

0

∥∥∥X(n)
s

∥∥∥p
H

ds

]
+ C6 E

[ˆ t̂

0
F
p
2
s ds

]

+
(
C · C4 + 2 (p− 2)C

p
2

)
T,

where (p (p− 2) + C4) γ < p
2θ by assumption on γ. For simplicity we set ϕ (t) := E

[∥∥∥X(n)
t

∥∥∥p
H

]
,

ψ (t) := E
[´ t

0

∥∥∥X(n)
s

∥∥∥p−2

H

∥∥∥X(n)
s−

∥∥∥α
V

ds

]
and C7 = C7 (p, γ, θ) = p

2θ− (p (p− 2) + C4) γ > 0.

We want to apply Gronwall’s inequality, therefore by Fubini’s theorem the inequality above
can be written as

ϕ
(
t̂
)

+ C7ψ
(
t̂
)
6Θ +

ˆ t̂

0
C5ϕ (s) ds,

where Θ := E
[
‖X0‖pH

]
+ C6 E

[´ T
0 F

p
2
s ds

]
+
(
C · C4 + 2 (p− 2)C

p
2

)
T. Note that C5 > 0

because K > 0. Since ψ is non-negative, we focus on

ϕ
(
t̂
)

+ C7ψ
(
t̂
)
6 Θ +

ˆ t̂

0
C5ϕ (s) ds 6 Θ +

ˆ t̂

0
C5 (ϕ (s) + C7ψ (s)) ds
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and Gronwall’s inequality B.5 gives us

ϕ
(
t̂
)

+ C7ψ
(
t̂
)
6 ΘeC5 t̂ 6 ΘeC5T .

Non-negativity and C7 > 0 gives us ϕ
(
t̂
)
6 ϕ

(
t̂
)
+C7ψ

(
t̂
)
6 ΘeC5T , therefore supr∈[0,t̂] ϕ (r) 6

ΘeC5T , and

ψ
(
t̂
)
6

1

C7

(
ϕ
(
t̂
)

+ C7ψ
(
t̂
))

6
1

C7
ΘeC5T .

Altogether we have (with resubstituting Θ) for all t ∈ [0, T ] and n ∈ N

sup
r∈[0,t̂]

ϕ (r) + ψ
(
t̂
)

6

(
1 +

1

C7

)
eC5T

(
E
[
‖X0‖pH

]
+ C6 E

[ˆ T

0
F
p
2
s ds

]
+
(
C · C4 + 2 (p− 2)C

p
2

)
T

)
6

(
1 +

1

C7

)
(1 + C6)

(
1 +

(
C · C4 + 2 (p− 2)C

p
2

)
T
)
eC5T

(
E
[
‖X0‖pH

]
+ E

[ˆ T

0
F
p
2
s ds

]
+ 1

)
,

(2.3.13)

where the constant

C2 := C2 (p, γ, θ, C,K, T ) :=

(
1 +

1

C7

)
(1 + C6)

(
1 +

(
C · C4 + 2 (p− 2)C

p
2

)
T
)
eC5T

is independent of R, t, n and the stopping time τ (n)
R .

Step (ii).8. In this last step we apply the monotone convergence theorem. Since (2.3.13)
holds for T ∈ [0, T ] and τ (n)

R → T as R→∞ P -a.s. we get

sup
r∈[0,T ]

E
[∥∥∥X(n)

r

∥∥∥p
H

]
+ E

[ˆ T

0

∥∥∥X(n)
s

∥∥∥p−2

H

∥∥∥X(n)
s

∥∥∥α
V

ds

]

= lim
R→∞

sup
r∈

[
0,T∧τ (n)

R

]E
[∥∥∥X(n)

r

∥∥∥p
H

]
+ E

[
lim
R→∞

ˆ T∧τ (n)
R

0

∥∥∥X(n)
s

∥∥∥p−2

H

∥∥∥X(n)
s

∥∥∥α
V

ds

]

= lim
R→∞

 sup
r∈

[
0,T∧τ (n)

R

]E
[∥∥∥X(n)

r

∥∥∥p
H

]
+ E

[ˆ T∧τ (n)
R

0

∥∥∥X(n)
s

∥∥∥p−2

H

∥∥∥X(n)
s

∥∥∥α
V

ds

]
(2.3.13)
6 C2

(
E
[
‖X0‖pH

]
+ E

[ˆ T

0
F
p
2
s ds

]
+ 1

)
for all n ∈ N.
Now let us prove 2.3.5 (iii).
Step (iii).1. Again, we apply Itô’s formula 2.3.3 to the process X(n)

t (see (2.3.11)). Next,
we use the results from Step (ii).2 and (ii).3 to calculate the occuring terms I1

(
t̂
)
and
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I2

(
t̂
)
in the stopped version of (2.3.11). Then we apply the absolute value and the triangle

inequality to get

∥∥∥X(n)

t̂

∥∥∥p
H

+
pθ

2

ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p−2

H

∥∥∥X(n)
s−

∥∥∥α
V

ds

6
∥∥∥X(n)

0

∥∥∥2

H
+ (p (p− 2) γ)

ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p−2

H

∥∥∥X(n)
s−

∥∥∥α
V

ds

+

(
p (p− 2)

2

p
C
p
2 + 1

) ˆ t̂

0
F
p
2
s ds

+

(
p (p− 2)

(
C +

2 (p− 2)

p

)
+
p

2

(
K +

p− 2

p

))ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p
H

ds+ (p− 2) 2TC
p
2

+p

∣∣∣∣∣
ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p−2

H

〈
X

(n)
s− , PnB

(
s,X(n)

s

)
dW (n)

s

〉
H

∣∣∣∣∣
+p

∣∣∣∣∣
ˆ t̂

0

ˆ
Z

∥∥∥X(n)
s−

∥∥∥p−2

H

〈
X

(n)
s− , Pnf

(
s,X

(n)
s− , z

)〉
H
µ̄ (ds, dz)

∣∣∣∣∣
+

∣∣∣∣∣
ˆ t̂

0

ˆ
Z

(∥∥∥X(n)
s− + Pnf

(
s,X

(n)
s− , z

)∥∥∥p
H
−
∥∥∥X(n)

s−

∥∥∥p
H

−p
∥∥∥X(n)

s−

∥∥∥p−2

H

〈
X

(n)
s− , Pnf

(
s,X(n)

s , z
)〉

H

)
µ (ds, dz)

∣∣∣∣ .
(2.3.14)

for t ∈ [0, T ]. On (2.3.14) we apply the supremum over
[
0, τ

(n)
R ∧ t

]
=
[
0, t̂
]
. The Lebesgue-

integrals stay unchanged, because all integrands are non-negative (also F was chosen to
be non-negative) and hence the integrals are increasing in time. So we have

sup
r∈[0,t̂]

∥∥∥X(n)
r

∥∥∥p
H

+
pθ

2

ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p−2

H

∥∥∥X(n)
s−

∥∥∥α
V

ds

6
∥∥∥X(n)

0

∥∥∥2

H
+ C8

ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p−2

H

∥∥∥X(n)
s−

∥∥∥α
V

ds+ C9

ˆ t̂

0
F
p
2
s ds

+C10

ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p
H

ds+ pJ1

(
t̂
)

+ pJ2

(
t̂
)

+ J3

(
t̂
)

+ (p− 2) 2TC
p
2 ,

(2.3.15)

with C8=p (p− 2) γ, C9=p (p− 2) 2
pC

p
2 + 1, C10=p (p− 2)

(
C + 2(p−2)

p

)
+ p

2

(
K + p−2

p

)
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and

J1

(
t̂
)

= sup
r∈[0,t̂]

∣∣∣∣ˆ r

0

∥∥∥X(n)
s−

∥∥∥p−2

H

〈
X

(n)
s− , PnB

(
s,X(n)

s

)
dW (n)

s

〉
H

∣∣∣∣ ,
J2
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= sup
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∣∣∣∣ˆ r
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ˆ
Z

∥∥∥X(n)
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H

〈
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(n)
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(
s,X
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s− , z
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J3
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= sup
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∣∣∣∣ˆ r
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Z

(∥∥∥X(n)
s− + Pnf

(
s,X

(n)
s− , z

)∥∥∥p
H
−
∥∥∥X(n)

s−

∥∥∥p
H

−p
∥∥∥X(n)

s−

∥∥∥p−2

H

〈
X

(n)
s− , Pnf

(
s,X(n)

s , z
)〉

H

)
µ (ds, dz)

∣∣∣∣ .

We want to estimate J1, J2 and J3 from above by the Lebesgue-integrals, which already
appeared, in expectation in the next three steps.
Step (iii).2. Let us estimate E

[
J1

(
t̂
)]
. Since J1 without the supremum and absolute

value is a real-valued, local martingale by Step (ii).5, we may apply the Burkholder-Davis-
Gundy inequality D.5 (i) and then condition (B1) in the form of (2.3.8). Remember that
CBDG > 0 is the generic constant from D.5 (i). Then

E
[
J1

(
t̂
)]

= E

 sup
r∈[0,t̂]

∣∣∣∣ˆ r

0

∥∥∥X(n)
s

∥∥∥p−2
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〈
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s , PnB

(
s,X(n)

s

)
dW (n)

s

〉
H

∣∣∣∣


D.5 (i)

6 CBDG E
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0

∥∥∥X(n)
s

∥∥∥2p−2

H

∥∥∥B (s,X(n)
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)∥∥∥2
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) 1
2



6 CBDG E


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∥∥∥X(n)
r

∥∥∥p
H

ˆ t̂

0

∥∥∥X(n)
s

∥∥∥p−2

H

∥∥∥B (s,X(n)
s

)
ds
∥∥∥2

L2

 1
2


(2.3.8)
6 CBDG E


 sup
r∈[0,t̂]

∥∥∥X(n)
r

∥∥∥p
H

ˆ t̂

0

∥∥∥X(n)
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∥∥∥p−2

H

(
C
(

1 + Fs + ‖X(n)
s ‖2H

)
+ γ‖X(n)

s ‖αV
)

ds

 1
2

 .

Let ε > 0 arbitrary. We want to apply Young’s inequality with q = 2 = q′ to the right
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hand side of the equation above which is equal to

E

√2ε

 sup
r∈[0,t̂]

∥∥∥X(n)
r

∥∥∥p
H

 1
2

· CBDG√
2ε

(ˆ t̂

0
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s
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H

(
C
(

1 + Fs + ‖X(n)
s ‖2H

)
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s ‖αV
)

ds

) 1
2


Y oung
6 εE

 sup
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(
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)
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s ‖αV
)

ds

]

=εE

 sup
r∈[0,t̂]

∥∥∥X(n)
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H

+ C · C11 E
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0
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s

∥∥∥p
H

ds

]
+ C · C11 E

[ˆ t̂

0

∥∥∥X(n)
s

∥∥∥p−2

H
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]

+ γC11 E

[ˆ t̂

0

∥∥∥X(n)
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H

∥∥∥X(n)
s

∥∥∥α
V

ds

]
+ C · C11 E

[ˆ t̂

0

∥∥∥X(n)
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∥∥∥p−2

H
ds

]
(2.3.16)

where C11 =C11 (ε, CBDG) =
C2
BDG
4ε . Again with Young’s inequality applied with q = p

p−2 ,

q′ = p
2 on the

∥∥∥X(n)
s

∥∥∥p−2

H
-terms we arrive at

E
[
J1

(
t̂
)]

6 εE

 sup
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(
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+ γC11 E
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H
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∥∥∥α
V

ds

]
+ C · C11T

for all t ∈ [0, T ].
Step (iii).3. Now we come to E

[
J2

(
t̂
)]
. By Step (ii).4, J2 without the supremum and

absolute value is a martingale and again, we may apply the Burkholder-Davis-Gundy
inequality D.5 (i) with the already given, generic constant CBDG > 0, cf. Step (iii).2.
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Then condition (B1) in form of (2.3.12) gives us, for an arbitrary ε > 0,

E
[
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Since this is exactly the same situation as in (2.3.16), we directly conclude

E
[
J2

(
t̂
)]

= εE

 sup
r∈[0,t̂]

∥∥∥X(n)
r

∥∥∥p
H

+ C · C11

(
1 +

2 (p− 2)

p

)
E

[ˆ t̂

0

∥∥∥X(n)
s

∥∥∥p
H

ds

]

+
2C · C11

p
E

[ˆ t̂

0
Fs ds

]
+ γC11 E

[ˆ t̂

0

∥∥∥X(n)
s

∥∥∥p−2

H

∥∥∥X(n)
s

∥∥∥α
V

ds

]
+ C · C11T

for all t ∈ [0, T ].
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Step (iii).4. For the term E
[
J3

(
t̂
)]

we have by Proposition 1.2.7 and Lemma C.1

E
[
J3

(
t̂
)]

6 E

[ ˆ t̂

0

ˆ
Z

∣∣∣∣ ∥∥∥X(n)
s− + Pnf

(
s,X

(n)
s− , z

)∥∥∥p
H
−
∥∥∥X(n)

s−

∥∥∥p
H

− p
∥∥∥X(n)

s−

∥∥∥p−2

H

〈
X

(n)
s− , Pnf

(
s,X(n)

s , z
)〉

H

∣∣∣∣µ (ds, dz)

]

1.2.7
= E

[ ˆ t̂

0

ˆ
Z

∣∣∣∣ ∥∥∥X(n)
s + Pnf

(
s,X(n)

s , z
)∥∥∥p

H
−
∥∥∥X(n)

s

∥∥∥p
H

− p
∥∥∥X(n)

s

∥∥∥p−2

H

〈
X(n)
s , Pnf

(
s,X(n)

s , z
)〉

H

∣∣∣∣m (dz) ds

]
C.1
6 C12 E

[ ˆ t̂

0

ˆ
Z

(∥∥∥X(n)
s

∥∥∥p
H

+ ‖f (s,Xs, z)‖pH
)
m (dz) ds

]

with C12 = C12 (p) = p + 2p−1 (2p− 3) (cf. proof of Lemma C.1). Now we apply (B2) to
the right hand side and arrive at

E
[
J3

(
t̂
)]

6 (C12 + C)E

[ˆ t̂

0

∥∥∥X(n)
s

∥∥∥p
H

ds

]
+ C · C12 E

[ˆ t̂

0
F
p
2
s ds

]

+ γC12 E

[ˆ t̂

0

∥∥∥X(n)
s

∥∥∥p−2

H

∥∥∥X(n)
s

∥∥∥α
V

ds

]
+ C · C12T

for all t ∈ [0, T ].
Step (iii).5. We want to apply Gronwall’s inequality. But first, let us combine the results
from Steps (iii).2 to (iii).4 and apply them to (2.3.15) in expectation. Then for all t ∈ [0, T ]
and ε > 0

E

 sup
r∈[0,t̂]

∥∥∥X(n)
r

∥∥∥p
H

+
pθ

2
E

[ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p−2

H

∥∥∥X(n)
s

∥∥∥α
V

ds

]

6E
[
‖X0‖pH

]
+ (C9 + 4C · C11 + C · C12)E

[ˆ t̂

0
F
p
2
s ds

]
+ T

(
C · C12 + 2C · C11 + 2 (p− 2)C

p
2

)

+

(
C10 + 2p · C11 · C

(
1 +

2 (p− 2)

p

)
+ C12 + C

)
E

[ˆ t̂

0

∥∥∥X(n)
s

∥∥∥p
H

ds

]

+ (C8 + 2pγC11 + γC12)E

[ˆ t̂

0

∥∥∥X(n)
s

∥∥∥p−2

H

∥∥∥X(n)
s

∥∥∥α
V

ds

]
+ 2εpE

 sup
r∈[0,t̂]

∥∥∥X(n)
r

∥∥∥p
H

 .
(2.3.17)
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We used
∥∥∥X(n)

0

∥∥∥
H

6 ‖X0‖H here. We choose ε = 1
3p and define

C13 := C13 (p, θ, γ, CBDG) :=
pθ

2
− (C8 + 2pγC11 + γC12)

=
pθ

2
− γ

(
p (p− 2) +

2pC2
BDG

4ε
+ p+ 2p−1 (2p− 3)

)
=
pθ

2
− γ

(
p (p− 2) +

3

2
p2C2

BDG + p+ 2p−1 (2p− 3)

)
.

Then C13 > 0, since we assumed γ < Γ. Furthermore we set

C14 := C14 (CBDG, p) :=
(
2 + 3C2

BDG

)
p− 3 + C12,

C15 := C15 (p,K,C,CBDG) := C

(
1 +

3

2
p2C2

BDG

(
1 +

2 (p− 2)

p

))
+ C10 + C12 and

C16 := C16 (p, T, C,CBDG) := T

(
C · C12 +

3

2
p · C · C2

BDG + 2 (p− 2)C
p
2

)
.

Now bringing the last two summands to the left hand side in (2.3.17) yields to

1

3
E

 sup
r∈[0,t̂]

∥∥∥X(n)
r

∥∥∥p
H

+ C13 E

[ˆ t̂

0

∥∥∥X(n)
s−

∥∥∥p−2

H

∥∥∥X(n)
s

∥∥∥α
V

ds

]

6E
[
‖X0‖pH

]
+ C14 E

[ˆ T

0
F
p
2
s ds

]
+ C15 E

[ˆ t̂

0

∥∥∥X(n)
s

∥∥∥p
H

ds

]
+ C16.

(2.3.18)

By the definition of our stopping time τ
(n)
R the right hand side is finite. Since 0 6∥∥∥X(n)

s

∥∥∥p
H

6 supr∈[0,s]

∥∥∥X(n)
r

∥∥∥p
H

for all s ∈ [0, T ] and since the integrals are isotone we
have by Fubini’s theorem

E

[ˆ t̂

0

∥∥∥X(n)
s

∥∥∥p
H

ds

]
=

ˆ t̂

0
E
[∥∥∥X(n)

s

∥∥∥p
H

]
ds 6

ˆ t̂

0
E

[
sup
r∈[0,s]

∥∥∥X(n)
r

∥∥∥p
H

]
ds.

For simplicity we define

ϕ (t) :=E

[
sup
r∈[0,t]

∥∥∥X(n)
r

∥∥∥p
H

]

ψ (t) :=E
[ˆ t

0

∥∥∥X(n)
s

∥∥∥p−2

H

∥∥∥X(n)
s

∥∥∥α
V

ds

]
.

Then we can rewrite (2.3.18) in the following way:

ϕ
(
t̂
)

+ 3C13ψ
(
t̂
)
6 3Θ +

ˆ t̂

0
3C15ϕ (s) ds
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for all t ∈ [0, T ], where Θ :=E
[
‖X0‖pH

]
+ C14 E

[´ T
0 F

p
2
s ds

]
+ C16. Note that C15 > 0

because K > 0. Since ψ is non-negative we have

ϕ
(
t̂
)

+ 3C13ψ
(
t̂
)
6 3Θ +

ˆ t̂

0
3C15ϕ (s) ds 6 3Θ +

ˆ t̂

0
3C15 (ϕ (s) + 3C13ψ (s)) ds

and we can apply Gronwall’s inequality B.5 to get

ϕ
(
t̂
)

+ 3C13ψ
(
t̂
)
6 3Θe3C15 t̂ 6 3Θe3C15T .

The non-negativity of ϕ and ψ and the fact that C13 > 0 gives us ϕ
(
t̂
)

6 ϕ
(
t̂
)

+
3C13ψ

(
t̂
)
6 3Θe3C15T and

ψ
(
t̂
)
6

1

3C13

(
ϕ
(
t̂
)

+ 3C13ψ
(
t̂
))

6
1

C13
Θe3C15T .

Hence we have for all t ∈ [0, T ] and n ∈ N

ϕ
(
t̂
)

+ ψ
(
t̂
)
6

(
3 +

1

C13

)
e3C15T

(
E
[
‖X0‖pH

]
+ C14 E

[ˆ T

0
F
p
2
s ds

]
+ C16

)
6

(
3 +

1

C13

)
(1 + C14) (1 + C16) e3C15T

(
E
[
‖X0‖pH

]
+ E

[ˆ T

0
F
p
2
s ds

]
+ 1

)
,

(2.3.19)

where the constant C3 := C3 (p, γ, θ, C,CBDG,K, T ) :=
(

3 + 1
C13

)
(1 + C14) (1 + C16) e3C15T

is independent of R, t, n and the stopping time τ (n)
R .

Step (iii).6. Finally we apply the monotone convergence theorem. Since (2.3.19) holds
for T ∈ [0, T ] and τ (n)

R → T as R→∞ P -a.s. we get

E

[
sup
r∈[0,T ]

∥∥∥X(n)
r

∥∥∥p
H

]
+ E

[ˆ T

0

∥∥∥X(n)
s

∥∥∥p−2

H

∥∥∥X(n)
s

∥∥∥α
V

ds

]

=E

 lim
R→∞

 sup
r∈

[
0,T∧τ (n)

R

]
∥∥∥X(n)

r

∥∥∥p
H

+

ˆ T∧τ (n)
R

0

∥∥∥X(n)
s

∥∥∥p−2

H

∥∥∥X(n)
s

∥∥∥α
V

ds




= lim
R→∞

E

 sup
r∈

[
0,T∧τ (n)

R

]
∥∥∥X(n)

r

∥∥∥p
H

+ E

[ˆ T∧τ (n)
R

0

∥∥∥X(n)
s

∥∥∥p−2

H

∥∥∥X(n)
s−

∥∥∥α
V

ds

]
(2.3.19)
6 C3

(
E
[
‖X0‖pH

]
+ E

[ˆ T

0
F
p
2
s ds

]
+ 1

)
for all n ∈ N.
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Notation. To simplify the used spaces in the following, we introduce the abbreviations

Lα = Lα ([0, T ]× Ω,dt⊗ P ;V ) ,

Lα
′

= L
α
α−1 ([0, T ]× Ω, dt⊗ P ;V ∗) ,

L2 = L2 ([0, T ]× Ω, dt⊗ P,L2 (U ;H)) ,

M =M2
T (P ⊗ Z,dt⊗ P ⊗m;H) .

2.3.7 Lemma. Suppose conditions (A1)–(A4) and (B1)–(B3) hold and that F ∈ L
p
2 ([0, T ]×

Ω,dt × P ). For each n ∈ N let
(
X

(n)
t

)
t∈[0,T ]

be a solution to (2.3.1). Then there exists

a subsequence (nk)k∈N and elements X̄ ∈ Lα ∩ L∞ ([0, T ] ;Lp (Ω;H)), Y ∈ Lα
′ , Z ∈ L2,

g ∈M such that the following holds:

(i) X(nk) → X̄ weakly in Lα and weakly star in L∞ ([0, T ] ;Lp (Ω;H)) as k →∞.

(ii) PnkA
(
·, X(nk)

)
→ Y weakly in Lα

′ as k →∞.

(iii) PnkB
(
·, X(nk)

)
→ Z weakly in L2 and

ˆ ·
0
PnkB

(
s,X(nk)

s

)
dW (nk)

s →
ˆ ·

0
Zs dWs

weakly in L∞
(
[0, T ] ;L2 (Ω;H)

)
as k →∞.

(iv) Pnkf
(
·, X(nk), ·

)
→ g weakly in M and

ˆ ·
0

ˆ
Z
Pnkf

(
s,X(nk)

s , z
)
µ̄ (ds, dz)→

ˆ ·
0
g (s, z) µ̄ (ds, dz)

weakly in L∞
(
[0, T ] ;L2 (Ω;H)

)
as k →∞.

Proof. Part (i). By Lemma 2.3.5 (i) we know that

sup
n∈N

E
[ˆ T

0

∥∥∥X(n)
t

∥∥∥α
V

dt

]
<∞,

i.e. the sequence
(
X(n)

)
n∈N is bounded in Lα. Since 1 < α <∞, Lα is reflexive and hence

there exists a weakly convergent subsequence
(
X(nk)

)
k∈N and an element X̄ ∈ Lα such

that X(nk) → X̄ weakly as k →∞.
Furthermore Lemma 2.3.5 (ii) tells us that

sup
k∈N

sup
t∈[0,T ]

E
[∥∥∥X(nk)

t

∥∥∥p
H

]
<∞.

So the sequence
(
X(nk)

)
k∈N is bounded in L∞ ([0, T ] ;Lp (Ω;H)). We can identify

L∞([0, T ] ;Lp (Ω;H)) =
(
L1
(

[0, T ] ;L
p
p−1 (Ω;H)

))∗
and by the Banach-Alaoglu theorem
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E.1 there exists another weakly star convergent subsequence
(
X(n′k)

)
k∈N

and an element

X̂ ∈ L∞ ([0, T ] ;Lp (Ω;H)) such that X(n′k) → X̂ weakly star as k →∞. But we also have
X(n′k) → X̄ weakly as k →∞, so we conclude X̄ = X̂.
Part (ii). Also the space Lα

′ is reflexive (since 1 < α <∞) and so we only have to show
that the sequence

(
Pn′kA

(
·, X(n′k)

))
k∈N

, where (n′k)k∈N is the subsequence from the last

step, is bounded in Lα
′ . Then there exists another subsequence (n′′k)k∈N, and an element

Y ∈ Lα
′ such that Pn′kA

(
·, X(n′′k)

)
→ Y weakly as k →∞. We have by (A4) and Young’s

inequality (remember p = β + 2)

sup
k∈N

E

[ˆ T

0

∥∥∥∥A(t,X(n′k)
t

)∥∥∥∥ α
α−1

V ∗
dt

]
(A4)
6 sup

n∈N
E

[ˆ T

0

(
Ft +K

∥∥∥∥X(n′k)
t

∥∥∥∥α
V

)(
1 +

∥∥∥∥X(n′k)
t

∥∥∥∥β
H

)
dt

]

= sup
k∈N

E

[ˆ T

0

(
Ft +K

∥∥∥∥X(n′k)
t

∥∥∥∥α
V

+ Ft

∥∥∥∥X(n′k)
t

∥∥∥∥p−2

H

+K

∥∥∥∥X(n′k)
t

∥∥∥∥α
V

∥∥∥∥X(n′k)
t

∥∥∥∥β
H

)
dt

]
Y oung
6 sup

k∈N
E

[ ˆ T

0

(
Ft +K

∥∥∥∥X(n′k)
t

∥∥∥∥α
V

+
2

p
F
p
2
t +

p− 2

p

∥∥∥∥X(n′k)
t

∥∥∥∥p
H

+K

∥∥∥∥X(n′k)
t

∥∥∥∥α
V

∥∥∥∥X(n′k)
t

∥∥∥∥β
H

)
dt

]
.

(2.3.20)

We use Lemma 2.3.5 (i) to get

K sup
k∈N

E
[ˆ T

0

∥∥∥∥X(n′k)
t

∥∥∥∥α
V

dt

]
<∞.

Lemma 2.3.5 (ii) gives us

K sup
k∈N

E

[ˆ T

0

∥∥∥∥X(n′k)
t

∥∥∥∥α
V

∥∥∥∥X(n′k)
t

∥∥∥∥β
H

dt

]
<∞

and with Fubini’s theorem

p− 2

p
sup
k∈N

E
[ˆ T

0

∥∥∥∥X(n′k)
t

∥∥∥∥p
H

dt

]
=
p− 2

p
sup
k∈N

ˆ T

0
E
[∥∥∥∥X(n′k)

t

∥∥∥∥p
H

]
dt

6
p− 2

p
sup
k∈N

ˆ T

0
sup
s∈[0,T ]

E
[∥∥∥∥X(n′k)

s

∥∥∥∥p
H

]
dt

=
T (p− 2)

p
sup
t∈[0,T ]

E
[∥∥∥∥X(n′k)

t

∥∥∥∥p
H

]
(2.3.4)
< ∞.
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Finally, by the assumption that F ∈ L
p
2 ([0, T ]× Ω,dt× P ) and Young’s inequality, we see

that

E
[ˆ T

0

(
Ft +

2

p
F
p
2
t

)
dt

]
6 E

[ˆ T

0

(
4

p
F
p
2
t +

p− 2

p

)
dt

]
=

4

p
E
[ˆ T

0
F
p
2
t dt

]
+
T (p− 2)

p
<∞,

hence (2.3.20) is finite and so there exists the required subsequence (n′′k)k∈N ⊂ (n′k)k∈N.
Part (iii). As before, since the space L2 is reflexive, too, it is sufficient to show that(
Pn′′kB

(
·, X(n′′k)

))
k∈N

is bounded in L2. Condition (B1), Fubini’s theorem and Lemma

2.3.5 (i) give us

sup
k∈N

E

[ˆ T

0

∥∥∥∥Pn′′kB
(
t,X

(n′′k)
t

)∥∥∥∥2

L2

dt

]
(B1)
6 sup

k∈N
E

[ˆ T

0

(
C

(
1 + Ft +

∥∥∥∥X(n′′k)
t

∥∥∥∥2

H

)
+ γ

∥∥∥∥X(n′′k)
t

∥∥∥∥α
V

)
dt

]

= sup
k∈N

(
CT + C E

[ˆ T

0
Ft dt

]
+ C

ˆ T

0
E

[∥∥∥∥X(n′′k)
t

∥∥∥∥2

H

]
dt+ γ E

[ˆ T

0

∥∥∥∥X(n′′k)
t

∥∥∥∥α
V

dt

])
(2.3.3)
6 sup

k∈N

(
CT + C E

[ˆ T

0
Ft dt

]
+ CT sup

t∈[0,T ]
E

[∥∥∥∥X(n′′k)
t

∥∥∥∥2

H

])
+ γC1

(2.3.3)
6 CT + C E

[ˆ T

0
Ft dt

]
+ C1 (CT + γ) <∞,

(2.3.21)

since by Hölder’s inequality E
[´ T

0 Ft dt
]
6 T

p−2
p E

[´ T
0 F

p
2
t dt

] 2
p
< ∞. So there exists

a subsequence (n′′′k )k∈N such that
(
Pn′′′k B

(
·, X(n′′′k )

))
k∈N

converges weakly in L2 to an

element Z ∈ L2.
Let us come to the second part of (iii): Since P̃n is the orthogonal projection onto

Span {g1, . . . , gn} in U , without loss of generality we have that Pn′′′k B
(
t,X

(n′′′k )
t

)
P̃n′′′k

converges weakly to Z in L2. Furthermoreˆ ·
0
PnB

(
s,X

(n)
t

)
dW (n)

s =

ˆ ·
0
PnB

(
s,X

(n)
t

)
P̃n dWs

holds for all n ∈ N. The mapping

IntW : L2 → L2 ([0, T ]× Ω;H) , Φ 7→ IntW (Φ) :=

ˆ
Φ dW

is linear and continuous, so it preserves weak convergence. Henceˆ ·
0
Pn′′′k B

(
s,X

(n′′′k )
t

)
dW

(n′′′k )
s =

ˆ ·
0
Pn′′′k B

(
s,X

(n′′′k )
s

)
P̃n′′′k dWs →

ˆ ·
0
Zs dWs
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weakly as k →∞.
Part (iv). If we identify

M = L2 (Ω× [0, T ]× Z,P ⊗ Z, P × dt×m;H) ,

then we see that M is reflexive, too. The proof of boundedness of
(
Pn′′′k f

(
·, X(n′′′k ), ·

))
k∈N

is also done with (B1):

sup
k∈N

(
E

[ˆ T

0

ˆ
Z

∥∥∥∥Pn′′′k f
(
t,X

(n′′′k )
t− , z

)∥∥∥∥2

H

m (dz) dt

])
(B1)
6 sup

k∈N

(
E

[ˆ T

0

(
C

(
1 + Ft +

∥∥∥∥X(n′′′k )
t

∥∥∥∥2

H

)
+ γ

∥∥∥∥X(n′′′k )
t

∥∥∥∥α
V

)
dt

])
<∞ cf. (2.3.21).

So there exists a subsequence (n̄k)k∈N ⊂ (n′′′k )k∈N which fulfills (i)-(iv). Especially there is

an element g ∈ M that is the weakly limit of Pn̄kf
(
·, X(n̄k)

s , ·
)
as k → ∞. The second

part of (iv) follows identically as in the proof before: Since the mapping

Intµ̄ : M→ L2 ([0, T ]× Ω;H) , Φ 7→ Intµ̄ (Φ) :=

ˆ ·
0

ˆ
Z

Φ (s, z) µ̄ (ds, dz)

is linear and continuous, it preserves weak convergence and we obtain that
ˆ ·

0

ˆ
Z
Pn̄kf

(
s,X

(n̄k)
s− , z

)
µ̄ (ds, dz)→

ˆ ·
0
g (s, z) µ̄ (ds, dz)

weakly as k →∞.

2.3.8 Remark. In the situation of Lemma 2.3.7 all the dt⊗ P -versions X̄, Y and Z are
progressively measurable, since the approximants are progressively measurable.

2.3.2. Construction of the infinite dimensional Solution

Let us recall what we have achieved so far. By the Galerkin approximation we considered
the following stochastic partial differential equation in the finite dimensional space Hn,
n ∈ N:

dY (t) =PnA (t, Y (t)) dt+ PnB (t, Y (t)) dW
(n)
t

+

ˆ
Z
Pnf (t, Y (t−) , z) µ̄ (dt,dz) ,

Y (0) =PnX0,

(2.3.22)

By Lemma 2.3.1 this equation has a unique strong solution
(
X

(n)
t

)
t∈[0,T ]

for each n ∈ N.
Each solution fulfills some apriori estimates from Lemma 2.3.5 which allowed us to find
limiting elements X̄, Y , Z and g as in Lemma 2.3.7 for the sequence of solutions

(
X(n)

)
n∈N.
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Now we come back to our origin equation

dX (t) =A (t,X (t)) dt+B (t,X (t)) dW (t) +

ˆ
Z
f (t,X (t−) , z) µ̄ (dt,dz) ,

X (0) =X0,

t ∈ [0, T ]. Let X̄, Y , Z, g be as in Lemma 2.3.7. We can define the following stochastic
process:

X (t) = X0 +

ˆ t

0
Y (s) ds+

ˆ t

0
Z (s) dW (s) +

ˆ t

0

ˆ
Z
g (s, z) µ̄ (ds, dz) , (2.3.23)

t ∈ [0, T ]. In the following we will see that this process is a V ∗-valued modification of
the V -valued process X̄ and that this process is a solution to our equation (2.1.1) which
finishes the proof of uniqueness.

Notation. For abbreviation we set

Y (nk) := PnkA
(
·, X(nk)

)
, Z(nk) := PnkB

(
·, X(nk)

)
, f (nk) := Pnkf

(
·, X(nk), ·

)
.

2.3.9 Lemma. The stochastic process (Xt)t∈[0,T ] defined by (2.3.23) is a V ∗-valued mod-
ification of X̄.

Proof. This proof is a straightforwarded extension of the proof of [PR07, Theorem 4.2.4,
p. 86]. We have to show X = X̄ dt⊗ P almost everywhere in V .
Let v ∈

⋃
n>1Hn (⊂ V ) and ϕ ∈ L∞ ([0, T ]× Ω). Using Lemma 2.3.7 (i) and then equation

(2.3.22) and Fubini’s theorem we get

E
[ˆ T

0
V ∗

〈
X̄ (t) , ϕ (t) v

〉
V

dt

]
= lim

k→∞
E
[ˆ T

0 V ∗

〈
X(nk) (t) , ϕ (t) v

〉
V

dt

]

= lim
k→∞

(
E
[ˆ T

0
V ∗〈PnkX0, ϕ (t) v〉V dt

]
+ E

[ˆ T

0

ˆ t

0 V ∗

〈
Y (nk) (s) , ϕ (t) v

〉
V

ds dt

]

+E
[ˆ T

0

〈ˆ t

0
Z(nk) (s) dW (nk) (s) , ϕ (t) v

〉
H

dt

]

+E
[ˆ T

0

〈ˆ t

0

ˆ
Z
f (nk) (s, z) µ̄ (ds, dz) , ϕ (t) v

〉
H

dt

])

= lim
k→∞

(
E
[
〈PnkX0, v〉H

ˆ T

0
ϕ (t) dt

]
+ E

[ˆ T

0 V ∗

〈
Y (nk) (s) ,

ˆ T

s
ϕ (t) dt v

〉
V

ds

]

+

ˆ T

0
E
[〈ˆ t

0
Z(nk) (s) dW (nk) (s) , ϕ (t) v

〉
H

]
dt

+

ˆ T

0
E
[〈ˆ t

0

ˆ
Z
f (nk) (s, z) µ̄ (ds, dz) , ϕ (t) v

〉
H

]
dt

)
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On the right hand side of the above equation we can now use our weak convergence results
from Lemma 2.3.7 (ii)-(iv) and this yields to

lim
k→∞

(
E
[
〈PnkX0, v〉H

ˆ T

0
ϕ (t) dt

]
+ E

[ˆ T

0 V ∗

〈
Y (nk) (s) ,

ˆ T

s
ϕ (t) dt v

〉
V

ds

]

+

ˆ T

0
E
[〈ˆ t

0
Z(nk) (s) dW (nk) (s) , ϕ (t) v

〉
H

]
dt

+

ˆ T

0
E
[〈ˆ t

0

ˆ
Z
f (nk) (s, z) µ̄ (ds, dz) , ϕ (t) v

〉
H

]
dt

)

=E
[ˆ T

0 V ∗

〈
X0 +

ˆ t

0
Y (s) ds+

ˆ t

0
Z (s) dW (s) +

ˆ t

0

ˆ
Z
g (s, z) µ̄ (ds, dz) , ϕ (t) v

〉
V

dt

]
=E

[ˆ T

0
V ∗〈X (t) , ϕ (t) v〉V dt

]
,

what was to be shown.

2.3.10 Proposition. The stochastic process (Xt)t∈[0,T ] defined by (2.3.23)

(i) is H-valued, càdlàg, (Ft)-adapted and satisfies P -a.s. the following Itô-formula:

‖Xt‖2H = ‖X0‖2H +

ˆ t

0

(
2
V ∗

〈
Ys, X̄s

〉
V

)
ds

+

ˆ t

0
‖Zs‖2L2

ds+

ˆ t

0

ˆ
Z
‖g (s, z)‖2H µ (ds, dz) + 2M (t)

for t ∈ [0, T ], where

M (t) =

ˆ t

0

〈
X̄s−, Zs dWs

〉
H

+

ˆ t

0

ˆ
Z

〈
X̄s−, g (s, z)

〉
H
µ̄ (ds, dz)

is a càdlàg, real-valued, local martingale.

(ii) fulfills

E

[
sup
t∈[0,T ]

‖Xt‖2H

]
<∞.

Proof. This proof is inspired by [Ste12, Theorem 5.9].
Step (i).1. Let us apply [GK82, Theorem 2] with

h (t) :=

ˆ t

0
Z (s) dW (s) +

ˆ t

0

ˆ
Z
g (s, z) µ̄ (ds, dz)
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and V (s) = s. Then X defined by (2.3.23) is H-valued, càdlàg, (Ft)-adapted and we have
P -a.s.

‖Xt‖2H = ‖X0‖2H +

ˆ t

0
2
V ∗

〈
Ys, X̄s

〉
V

ds

+

ˆ t

0
〈Xs−, dhs〉H + [h]t

for all t ∈ [0, T ], where [h]t denotes the square bracket of h (see Definition D.3) and we
already used that X is a V ∗-valued modification of X̄ by Lemma 2.3.9.
Step (i).2. Since Xt− as an (Ft)-adapted càdlàg process is predicatble and since Z ∈
NW (0, T ), we know that the stochastic integral

´ t
0 〈Xs−, Zs dWs〉H is a real-valued local

martingale.
Furthermore, since g ∈ Nµ̄ (T,Z;H), we obtain that

ˆ t

0

ˆ
Z
〈Xs−, g (s, z)〉H µ̄ (ds, dz) =: Nt

is a real-valued local martingale if we stop it by

τn := inf {t > 0 |Nt > n} ∧ T

for n ∈ N, since we have limn→∞ τn = T P -a.s.
From this we see that the stochastic integral

ˆ t

0
〈Xs−,dhs〉H =

ˆ t

0
〈Xs−, Zs dWs〉H +

ˆ t

0

ˆ
Z
〈Xs−, g (s, z)〉H µ̄ (ds, dz)

is a real-valued, càdlàg, local martingale.
Step (i).3. We know that [ˆ ·

0
Zs dWs

]
t

=

ˆ t

0
‖Zs‖2L2

ds

and by Proposition 1.2.8[ˆ ·
0

ˆ
Z
g (s, z) µ̄ (ds, dz)

]
t

=

ˆ t

0

ˆ
Z
‖g (s, z)‖2H µ (ds, dz) ,

so we conclude

[h]t =

ˆ t

0
‖Zs‖2L2

ds+

ˆ t

0

ˆ
Z
‖g (s, z)‖2H µ (ds, dz) .

Now we want to prove (ii).
Step (ii).1. We define

τR := inf
{
t > 0

∣∣ ∥∥X̄t

∥∥
H
> R

}
∧ T,
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which is a stopping time due to Theorem D.4 and use the notation

t̂ := t̂ (t, R) = t ∧ τR

for t ∈ [0, T ] and R > 0. We have τR → T for R→∞ P -a.s. Itô’s formula from 2.3.10 (i)
applied with Hölder’s inequality yields to

‖Xt‖2H 6 ‖X0‖2H +

(ˆ T

0
‖Ys‖

α
α−1

V ∗ ds

)α−1
α
(ˆ T

0

∥∥X̄s

∥∥α
V

ds

) 1
α

+

ˆ T

0
‖Zs‖2L2

ds+

ˆ T

0

ˆ
Z
‖g (s, z)‖2H µ (ds, dz)

+ 2

∣∣∣∣ˆ t

0

〈
X̄s−, Zs dWs

〉
H

∣∣∣∣+ 2

∣∣∣∣ˆ t

0

ˆ
Z

〈
X̄s−, g (s, z)

〉
H
µ̄ (ds, dz)

∣∣∣∣ .
Now we take the supremum over

[
0, t̂
]
and then apply the expectation to both sides:

E

 sup
s∈[0,t̂]

‖Xs‖2H


6E

[
‖X0‖2H

]
+ E

(ˆ T

0
‖Ys‖

α
α−1

V ∗ ds

)α−1
α
(ˆ T

0

∥∥X̄s

∥∥α
V

ds

) 1
α


+ E

[ˆ T

0
‖Zs‖2L2

ds

]
+ E

[ˆ T

0

ˆ
Z
‖g (s, z)‖2H µ (ds, dz)

]

+ 2E

 sup
r∈[0,t̂]

∣∣∣∣ˆ r

0

〈
X̄s−, Zs dWs

〉
H

∣∣∣∣
+ 2E

 sup
r∈[0,t̂]

∣∣∣∣ˆ r

0

ˆ
Z

〈
X̄s−, g (s, z)

〉
H
µ̄ (ds, dz)

∣∣∣∣
 .

(2.3.24)

Step (ii).2. We apply the Burkholder-Davis-Gundy inequality D.5 (i) on the first sum-
mand in the last row of (2.3.24) and Lemma 2.3.9

2E

 sup
r∈[0,t̂]

∣∣∣∣ˆ r

0

〈
X̄s−, Zs dWs

〉
H

∣∣∣∣


D.5 (i)

6 2CBDG E

[[ˆ r

0

〈
X̄s−, Zs dWs

〉
H

] 1
2

t̂

]
6 2CBDG E

(ˆ t̂

0

∥∥X̄s−
∥∥2

H
‖Zs‖2L2

ds

) 1
2


2.3.9
= 2CBDG E

(ˆ t̂

0
‖Xs−‖2H ‖Zs‖

2
L2

ds

) 1
2

 .
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For ε > 0 and by Young’s inequality we get

2E

 sup
r∈[0,t̂]

∣∣∣∣ˆ r

0

〈
X̄s−, Zs dWs

〉
H

∣∣∣∣
 62CBDG E

(ˆ t̂

0
‖Xs−‖2H ‖Zs‖

2
L2

ds

) 1
2



62CBDG E


ε sup

s∈[0,t̂]
‖Xs−‖2H

 1
2 (

1

ε

ˆ t̂

0
‖Zs‖2L2

ds

) 1
2


Y oung
6 2CBDG E

ε
2

sup
s∈[0,t̂]

‖Xs‖2H +
1

2ε

ˆ T

0
‖Zs‖2L2

ds


=CBDGεE

 sup
s∈[0,t̂]

‖Xs‖2H

+
CBDG
ε

E
[ˆ T

0
‖Zs‖2L2

ds

]

and we used sups∈[0,t] ‖Xs−‖2H 6 sups∈[0,t] ‖Xs‖2H here.
Step (ii).3. Again, the Burkholder-Davis-Gundy inequality D.5 (i) applied to the second
term in the last row of (2.3.24) and then Proposition 1.2.8 together with the Cauchy-
Schwarz inequality yields to

2E

 sup
r∈[0,t̂]

∣∣∣∣ˆ r

0

ˆ
Z

〈
X̄s−, g (s, z)

〉
H
µ̄ (ds, dz)

∣∣∣∣


D.5 (i)

6 2CBDG E

[[ˆ ·
0

ˆ
Z

〈
X̄s−, g (s, z)

〉
H
µ̄ (ds, dz)

] 1
2

t̂

]

1.2.8
6 2CBDG E

(ˆ t̂

0

ˆ
Z

∥∥X̄s−
∥∥2

H
‖g (s, z)‖2H µ (ds, dz)

) 1
2



62CBDG E


 sup
s∈[0,t̂]

‖Xs‖2H
ˆ t̂

0

ˆ
Z
‖g (s, z)‖2H µ (ds, dz)

 1
2

 ,

where we used that X = X̄ dt ⊗ P -a.e. by Lemma 2.3.9 and that sups∈[0,t] ‖Xs−‖2H 6

sups∈[0,t] ‖Xs‖2H in the last step. Let ε > 0. Proposition 1.2.7 and Young’s inequality leads
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to

2CBDG E


 sup
s∈[0,t̂]

‖Xs‖2H
ˆ t̂

0

ˆ
Z
‖g (s, z)‖2H µ (ds, dz)

 1
2


1.2.7
= 2CBDG E


ε sup

s∈[0,t̂]
‖Xs‖2H

 1
2 (

1

ε

ˆ t̂

0

ˆ
Z
‖g (s, z)‖2H m (ds) ds

) 1
2


6CBDGεE

 sup
s∈[0,t̂]

‖Xs‖2H

+
CBDG
ε

E

[ˆ t̂

0

ˆ
Z
‖g (s, z)‖2H m (ds) ds

]
.

Step (ii).4. Combining the results from the last two steps for ε = 1
4CBDG

and inserting
them into (2.3.24) yields to

1

2
E

 sup
s∈[0,t̂]

‖Xs‖2H

 6E
[
‖X0‖2H

]
+ E

(ˆ T

0
‖Ys‖

α
α−1

V ∗ ds

)α−1
α
(ˆ T

0

∥∥X̄s

∥∥α
V

ds

) 1
α


+4C2

BDG

(
E
[ˆ T

0
‖Zs‖2L2

ds

]
+ E

[ˆ T

0

ˆ
Z
‖g (s, z)‖2H µ (ds, dz)

])
(2.3.25)

Since the right hand side is independent of R, we only have to show that it is finite. For
p > 2 (if p = 2 there is nothing to show) we infer with Hölder’s inequality

E
[
‖X0‖2H

]
6 E

[
‖X0‖pH

] 2
p · E [1]

p−2
p = E

[
‖X0‖pH

] 2
p <∞.

Since X̄ ∈ Lα by Lemma 2.3.7 (i) and since Y ∈ Lα
′ by Lemma 2.3.7 (ii) we see with

Young’s inequality for q = α
α−1 , q

′ = α

E

(ˆ T

0
‖Ys‖

α
α−1

V ∗ ds

)α−1
α
(ˆ T

0

∥∥X̄s

∥∥α
V

ds

) 1
α


6
α− 1

α
E
[ˆ T

0
‖Ys‖

α
α−1

V ∗ ds

]
+

1

α
E
[ˆ T

0

∥∥X̄s

∥∥α
V

ds

]
<∞.

From Lemma 2.3.7 (iii) we have Z ∈ L2 and therefore

E
[ˆ T

0
‖Zs‖2L2

ds

]
<∞

and, by Proposition 1.2.7 and Lemma 2.3.7 (iv), we see that

E
[ˆ T

0

ˆ
Z
‖g (s, z)‖2H µ (ds, dz)

]
1.2.7
= E

[ˆ T

0

ˆ
Z
‖g (s, z)‖2H m (dz) ds

]
<∞.
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Hence

E

 sup
s∈[0,t̂]

‖Xs‖2H

 <∞
independent of R. Letting R→∞, we finish the proof.

2.3.11 Corollary. In the situation of Proposition 2.3.10, the appearing local martingale
ˆ t

0

〈
X̄s−, Zs dWs

〉
H

+

ˆ t

0

ˆ
Z

〈
X̄s−, g (s, z)

〉
H
µ̄ (ds, dz)

is a (global) martingale.

Proof. We use the Cauchy-Schwarz inequality, Lemma 2.3.9 and Hölder’s inequality on

E

[[ˆ ·
0

〈
X̄s−, Zs dWs

〉
H

] 1
2

T

]
6 E

(ˆ T

0
‖Xs−‖2H ‖Zs‖

2
L2

ds

) 1
2


6E

( sup
t∈[0,T ]

‖Xs‖2H

) 1
2 (ˆ T

0
‖Zs‖2L2

ds

) 1
2


Hölder
6 E

[
sup
t∈[0,T ]

‖Xs‖2H

] 1
2

E
[ˆ T

0
‖Zs‖2L2

ds

] 1
2

<∞

by Proposition 2.3.10 (ii) and Z ∈ L2. Doing the same together with Proposition 1.2.7
yields to

E

[[ˆ ·
0

ˆ
Z

〈
X̄s−, g (s, z)

〉
H
µ̄ (ds, dz)

] 1
2

T

]

6E

(ˆ T

0

ˆ
Z

∥∥X̄s−
∥∥2

H
‖g (s, z)‖2H µ (ds, dz)

) 1
2


6E

( sup
t∈[0,T ]

‖Xs‖2H

) 1
2 (ˆ T

0

ˆ
Z
‖g (s, z)‖2H m (dz) ds

) 1
2


6E

[
sup
t∈[0,T ]

‖Xs‖2H

] 1
2

E
[ˆ T

0

ˆ
Z
‖g (s, z)‖2H m (dz) ds

] 1
2

<∞,

since g ∈M and Proposition 2.3.10 (ii).
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Now, using Theorem D.5 (ii), we see that
ˆ t

0

〈
X̄s−, Zs dWs

〉
H

+

ˆ t

0

ˆ
Z

〈
X̄s−, g (s, z)

〉
H
µ̄ (ds, dz)

is a global L1 (Ω;R)-martingale.

The following Proposition finishes the proof of existence.

2.3.12 Proposition. In the above situation we have

A
(
·, X̄

)
= Y dt⊗ P -a.e.,

B
(
·, X̄

)
= Z dt⊗ P -a.e.,

f
(
s, X̄s−, z

)
= g (s, z) dt⊗ P ⊗m-a.e.

Therefore the process (Xt)t∈[0,T ] given by (2.3.23) is a solution to (2.1.1).

Proof. Define

N := Lα ∩ Lp (Ω;L∞ ([0, T ] ;H)) .

Let φ be a V -valued, progressively measurable version of an element in N such that

E
[ˆ T

0
% (φ) ds

]
<∞.

In the following we will see that the integral
´ t

0 (F (s) + % (φ (s))) ds has to be finite for
our calculations. Since V ↪→ H continuously and by our estimate of % in condition (B3),
the following definition is justified: Let τφ : Ω→ [0, T ] defined by

τφ : = τφ (φ,R) := inf

{
0 6 t 6 T

∣∣∣∣ˆ t

0
(F (s) + ‖φ (s)‖αV ) ds > R

}
∧ T

for R > 0. Then τφ is a stopping time. For simplicity we set

t̂ := t̂ (t, φ,R) := t ∧ τφ, 0 6 t 6 T.

Step 1. Applying Itô’s formula together with Itô’s product rule we obtain for t ∈ [0, T ]

E
[
e−
´ t̂
0 (Fs+%(φs))ds

∥∥∥X(nk)

t̂

∥∥∥2

H

]
− E

[∥∥∥X(nk)
0

∥∥∥2

H

]

= E

[ ˆ t̂

0
e−
´ s
0 (Fr+%(φr))dr

(
2
V ∗

〈
A
(
s,X(nk)

s

)
, X

(nk)
s−

〉
V

+
∥∥∥PnkB (s,X(nk)

s

)
P̃nk

∥∥∥2

L2

− (Fs + % (φs))
∥∥∥X(nk)

s

∥∥∥2

H

)
ds

]

+E

[ˆ t̂

0

ˆ
Z
e−
´ s
0 (Fr+%(φr))dr

∥∥∥Pnkf (s,X(nk)
s− , z

)∥∥∥2

H
µ (dz, ds)

]
,
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where we used that the expectation of the appearing martingale is zero. Proposition 1.2.7
gives us

E
[
e−
´ t̂
0 (Fs+%(φs))ds

∥∥∥X(nk)

t̂

∥∥∥2

H

]
− E

[∥∥∥X(nk)
0

∥∥∥2

H

]

=E

[ ˆ t̂

0
e−
´ s
0 (Fr+%(φr))dr

(
2
V ∗

〈
A
(
s,X(nk)

s

)
, X

(nk)
s−

〉
V

+
∥∥∥PnkB (s,X(nk)

s

)
P̃nk

∥∥∥2

L2

− (Fs + % (φs))
∥∥∥X(nk)

s

∥∥∥2

H
+

ˆ
Z

∥∥∥Pnkf (s,X(nk)
s− , z

)∥∥∥2

H
m (dz)

)
ds

]

6E

[ ˆ t̂

0
e−
´ s
0 (Fr+%(φr))dr

(
2
V ∗

〈
A
(
s,X(nk)

s

)
, X(nk)

s

〉
V

+
∥∥∥B (s,X(nk)

s

)∥∥∥2

L2

− (Fs + % (φs))
∥∥∥X(nk)

s

∥∥∥2

H
+

ˆ
Z

∥∥∥f (s,X(nk)
s , z

)∥∥∥2

H
m (dz)

)
ds

]
.

(2.3.26)

In the last step we made the norms bigger by leaving out the projection Pnk .
Step 2. It is helpful in the following calculations to have in mind that by the defintion of
the inner product we can calculate

V ∗

〈
A
(
s,X(nk)

s

)
, X(nk)

s

〉
V

=
V ∗

〈
A
(
s,X(nk)

s

)
−A (s, φs) , X

(nk)
s − φs

〉
V

+
V ∗

〈
A (s, φs) , X

(nk)
s

〉
V

+
V ∗

〈
A
(
s,X(nk)

s

)
−A (s, φs) , φs

〉
V
,

∥∥∥B (s,X(nk)
s

)∥∥∥2

L2

=
∥∥∥B (s,X(nk)

s

)
−B (s, φs)

∥∥∥2

L2

− ‖B (s, φs)‖2L2

+2
〈
B
(
s,X(nk)

s

)
, B (s, φs)

〉
L2

,

∥∥∥f (s,X(nk)
s , z

)∥∥∥2

H
=

∥∥∥f (s,X(nk)
s , z

)
− f (s, φs, z)

∥∥∥2

H
− ‖f (s, φs, z)‖2H

+2
〈
f
(
s,X(nk)

s , z
)
, f (s, φs, z)

〉
H

and ∥∥∥X(nk)
s − φs

∥∥∥2

H
−
∥∥∥X(nk)

s

∥∥∥2

H
= ‖φs‖2H − 2

〈
X(nk)
s , φs

〉
H
. (2.3.27)

When referring to (2.3.27) we think of one of the four equations above depending on the
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context. Now, the local monotonicity condition (A2) gives us for

2
V ∗

〈
A
(
s,X(nk)

s

)
, X(nk)

s

〉
V

+
∥∥∥B (s,X(nk)

s

)∥∥∥2

L2

+

ˆ
Z

∥∥∥f (s,X(nk)
s , z

)∥∥∥2

H
m (dz)

= 2
V ∗

〈
A
(
s,X(nk)

s

)
−A (s, φs) , X

(nk)
s − φs

〉
V

+
∥∥∥B (s,X(nk)

s

)
−B (s, φs)

∥∥∥2

L2

+

ˆ
Z

∥∥∥f (s,X(nk)
s , z

)
− f (s, φs, z)

∥∥∥2

H
m (dz)

+2
V ∗

〈
A (s, φs) , X

(nk)
s

〉
V

+2
V ∗

〈
A
(
s,X(nk)

s

)
−A (s, φs) , φs

〉
V

+2
〈
B
(
s,X(nk)

s

)
, B (s, φs)

〉
L2

− ‖B (s, φs)‖2L2

+

ˆ
Z

(
2
〈
f
(
s,X(nk)

s , z
)
, f (s, φs, z)

〉
H
− ‖f (s, φs, z)‖2H

)
m (dz)

(A2)
6 (Fs + % (φs))

∥∥∥X(nk)
s − φs

∥∥∥2

H

+2
V ∗

〈
A (s, φs) , X

(nk)
s

〉
V

+2
V ∗

〈
A
(
s,X(nk)

s

)
−A (s, φs) , φs

〉
V

+2
〈
B
(
s,X(nk)

s

)
, B (s, φs)

〉
L2

− ‖B (s, φs)‖2L2

+

ˆ
Z

(
2
〈
f
(
s,X(nk)

s , z
)
, f (s, φs, z)

〉
H
− ‖f (s, φs, z)‖2H

)
m (dz) .

(2.3.28)

Inserting (2.3.28) into (2.3.26) yields to

E
[
e−
´ t̂
0 (Fs+%(φs))ds

∥∥∥X(nk)

t̂

∥∥∥2

H

]
− E

[∥∥∥X(nk)
0

∥∥∥2

H

]

6E

[ˆ t̂

0
e−
´ s
0 (Fr+%(φr))dr

(
(Fs + % (φs))

∥∥∥X(nk)
s − φs

∥∥∥2

H
− (Fs + % (φs))

∥∥∥X(nk)
s

∥∥∥2

H

+ 2
V ∗

〈
A (s, φs) , X

(nk)
s

〉
V

+2
V ∗

〈
A
(
s,X(nk)

s

)
−A (s, φs) , φs

〉
V

+ 2
〈
B
(
s,X(nk)

s

)
, B (s, φs)

〉
L2

− ‖B (s, φs)‖2L2

+

ˆ
Z

(
2
〈
f
(
s,X(nk)

s , z
)
, f (s, φs, z)

〉
H
− ‖f (s, φs, z)‖2H

)
m (dz)

)
ds

]
.

(2.3.29)
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Now, by (2.3.27), we obtain from (2.3.29)

E

[ ˆ t̂

0
e−
´ s
0 (Fr+%(φr))dr

(
(Fs + % (φs))

∥∥∥X(nk)
s − φs

∥∥∥2

H
− (Fs + % (φs))

∥∥∥X(nk)
s

∥∥∥2

H

+ 2
V ∗

〈
A (s, φs) , X

(nk)
s

〉
V

+2
V ∗

〈
A
(
s,X(nk)

s

)
−A (s, φs) , φs

〉
V

+ 2
〈
B
(
s,X(nk)

s

)
, B (s, φs)

〉
L2

− ‖B (s, φs)‖2L2

+

ˆ
Z

(
2
〈
f
(
s,X(nk)

s , z
)
, f (s, φs, z)

〉
H
− ‖f (s, φs, z)‖2H

)
m (dz)

)
ds

]

=E

[ ˆ t̂

0
e−
´ s
0 (Fr+%(φr))dr

(
(Fs + % (φs))

(
‖φs‖2H − 2

〈
X(nk)
s , φs

〉
H

)
+ 2

V ∗

〈
A (s, φs) , X

(nk)
s

〉
V

+2
V ∗

〈
A
(
s,X(nk)

s

)
−A (s, φs) , φs

〉
V

+ 2
〈
B
(
s,X(nk)

s

)
, B (s, φs)

〉
L2

− ‖B (s, φs)‖2L2

+

ˆ
Z

(
2
〈
f
(
s,X(nk)

s , z
)
, f (s, φs, z)

〉
H
− ‖f (s, φs, z)‖2H

)
m (dz)

)
ds

]
.

Step 3. Let ψ ∈ L∞ ([0, T ] ; dt) be non-negative. Then we have

E
[ˆ T

0
ψt

(
e−
´ t̂
0 (Fs+%(φs))ds ‖Xt‖2H − ‖X0‖2H

)
dt

]
6 lim inf

k→∞
E
[ˆ T

0
ψt

(
e−
´ t̂
0 (Fs+%(φs))ds

∥∥∥X(nk)
t

∥∥∥2

H
−
∥∥∥X(nk)

0

∥∥∥2

H

)
dt

]

6 lim inf
k→∞

E

[ ˆ T

0
ψt

( ˆ t̂

0
e−
´ s
0 (Fr+%(φr))dr

(
(Fs + % (φs))

(
‖φs‖2H − 2

〈
X(nk)
s , φs

〉
H

)

+ 2
V ∗

〈
A (s, φs) , X

(nk)
s

〉
V

+2
V ∗

〈
A
(
s,X(nk)

s

)
−A (s, φs) , φs

〉
V

+ 2
〈
B
(
s,X(nk)

s

)
, B (s, φs)

〉
L2

− ‖B (s, φs)‖2L2

+

ˆ
Z

(
2
〈
f
(
s,X(nk)

s , z
)
, f (s, φs, z)

〉
H
− ‖f (s, φs, z)‖2H

)
m (dz)

)
ds

)
dt

]
.

(2.3.30)

By Itô’s formula in Proposition 2.3.10 and Itô’s product rule we have for φ ∈ N ∩M
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together with Corollary 2.3.11

E
[
e−
´ t̂
0 (Fs+%(φs))ds ‖Xt‖2H

]
− E

[
‖X0‖2H

]
=E

[ˆ t̂

0
e−
´ s
0 (Fr+%(φr))dr

(
2
V ∗

〈
Ys, X̄s

〉
V

+ ‖Zs‖2L2

− (Fs + % (φs)) ‖Xs‖2H +

ˆ
Z
‖g (s, z)‖2H m (dz)

)
ds

]
.

(2.3.31)

We can now insert (2.3.31) into (2.3.30) in the following way by using Fubini’s theorem:

E

[ ˆ T

0
ψt

(ˆ t̂

0
e−
´ s
0 (Fr+%(φr))dr

(
2
V ∗

〈
Ys, X̄s

〉
V

+ ‖Zs‖2L2

− (Fs + % (φs)) ‖Xs‖2H +

ˆ
Z
‖g (s, z)‖2H m (dz)

)
ds

)
dt

]
(2.3.31)

= E
[ˆ T

0
ψt

(
e−
´ t̂
0 (Fs+%(φs))ds ‖Xt‖2H − ‖X0‖2H

)
dt

]
(2.3.30)
6 lim inf

k→∞
E

[ ˆ T

0
ψt

(ˆ t̂

0
e−
´ s
0 (Fr+%(φr))dr

(
(K + % (φs))

(
‖φs‖2H − 2

〈
X(nk)
s , φs

〉
H

)

+ 2
V ∗

〈
A (s, φs) , X

(nk)
s

〉
V

+2
V ∗

〈
A
(
s,X(nk)

s

)
−A (s, φs) , φs

〉
V

+ 2
〈
B
(
s,X(nk)

s

)
, B (s, φs)

〉
L2

− ‖B (s, φs)‖2L2

+

ˆ
Z

(
2
〈
f
(
s,X(nk)

s , z
)
, f (s, φs, z)

〉
H
− ‖f (s, φs, z)‖2H

)
m (dz)

)
ds

)
dt

]
.

Hence we get with the definition of the norm and inner product (cf. (2.3.27) in step 2) by
bringing the terms on the right hand side to the left hand side

E

[ ˆ T

0
ψt

(ˆ t̂

0
e−
´ s
0 (Fr+%(φr))dr

(
2
V ∗

〈
Ys −A (s, φs) , X̄s − φs

〉
V

+ ‖Zs −B (s, φs)‖2L2

− (Fs + % (φs))
∥∥X̄s − φs

∥∥2

H
+

ˆ
Z
‖g (s, z)− f (s, φs, z)‖2H m (dz)

)
ds

)
dt

]
6 0.

(2.3.32)
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Now we take φ = X̄ and get by (2.3.32) that

0 6 E

[ ˆ T

0
ψt

(ˆ t̂

0
e−
´ s
0 (Fr+%(X̄r))dr

(
∥∥Zs −B (s, X̄s

)∥∥2

L2
+

ˆ
Z

∥∥g (s, z)− f
(
s, X̄s, z

)∥∥2

H
m (dz)

)
ds

)
dt

]
6 0

and letting R→∞ we see that we have by the arbitrariness of ψ

Z = B
(
·, X̄

)
in L2,

g = f
(
·, X̄, ·

)
in M.

Step 4. We consider the following inequality

E

[ ˆ T

0
ψt

(ˆ t̂

0
e−
´ s
0 (Fr+%(φr))dr

(
2
V ∗

〈
Ys −A (s, φs) , X̄s − φs

〉
V

− (Fs + % (φs))
∥∥X̄s − φs

∥∥2

H

)
ds

)
dt

]
(2.3.32)
6 0.

(2.3.33)

Let ε > 0, v ∈ V and φ̃ ∈ L∞ ([0, T ]× Ω, dt⊗ P ;R). For φ = X̄ − εφ̃v in (2.3.33) we get

0
(2.3.33)
> E

[ ˆ T

0
ψt

(ˆ t̂

0
e−
´ s
0 (Fr+%(X̄r−εφ̃rv))dr

(
2
V ∗

〈
Ys −A

(
s, X̄s − εφ̃sv

)
, εφ̃sv

〉
V

−
(
Fs + %

(
X̄s − εφ̃sv

))∥∥∥εφ̃sv∥∥∥2

H

)
ds

)
dt

]

=εE

[ ˆ T

0
ψt

(ˆ t̂

0
e−
´ s
0 (Fr+%(X̄r−εφ̃rv))dr

(
2φ̃s

V ∗

〈
Ys −A

(
s, X̄s − εφ̃sv

)
, v
〉
V

− ε
(
Fs + %

(
X̄s − εφ̃sv

))∥∥∥φ̃sv∥∥∥2

H

)
ds

)
dt

]
(2.3.34)

By the hemicontinuity (A1) the map ε 7→
V ∗

〈
Ys −A

(
s, X̄s − εφ̃sv

)
, v
〉
V

is continuous,

hence we have limε→0
V ∗

〈
Ys −A

(
s, X̄s − εφ̃sv

)
, v
〉
V

=
V ∗

〈
Ys −A

(
s, X̄s

)
, v
〉
V
. Since

we assumed % to be hemicontinuous, too, we also conclude limε→0 %
(
X̄s − εφ̃sv

)
= %

(
X̄s

)
.

Now, by dividing by ε (> 0) and then letting ε→ 0 in (2.3.34) we come to

0 >E

[ˆ T

0
ψt

(ˆ t̂

0
e−
´ s
0 (Fr+%(X̄r))dr

(
2φ̃s V ∗

〈
Ys −A

(
s, X̄s

)
, v
〉
V

)
ds

)
dt

]
.
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Again, by the arbitrariness of ψ and φ̃ and with R→∞ we can finally conclude

Y = A
(
·, X̄

)
dt⊗ P -a.e.

We still lack the proof of the regularity estimates 2.2.1 (i) and 2.2.1 (ii).

2.3.13 Corollary. Let (Xt)t∈[0,T ] the stochastic process defined in (2.3.23).

(i) For the dt⊗ P -version X̄ of X we have

X̄ ∈ Lα ([0, T ]× Ω,dt⊗ P ;V ) ∩ L2 ([0, T ]× Ω, dt⊗ P ;H) .

(ii) There exists a constant C̃ = C̃ (p, γ, θ, C,K, T ) > 0 such that

sup
t∈[0,T ]

E
[
‖X (t)‖pH

]
6 C̃

(
E
[
‖X0‖pH

]
+ E

[ˆ T

0
F
p
2
t dt

]
+ 1

)
.

(iii) If 0 6 γ < Γ, then for the dt⊗ P -version X̄ of X we have

X̄ ∈ Lp (Ω;L∞ ([0, T ] ;H))

and there exists a constant Ĉ = Ĉ (p, γ, θ, C,CBDG,K, T ) > 0 such that

E

[
sup
t∈[0,T ]

‖X (t)‖pH

]
6 Ĉ

(
E
[
‖X0‖pH

]
+ E

[ˆ T

0
F
p
2
t dt

]
+ 1

)
.

Proof. Part (i). We note that X̄ ∈ Lα ([0, T ]× Ω,dt⊗ P ;V ) = Lα is already fulfilled by
Lemma 2.3.5 (i). Since X̄ = X dt ⊗ P -a.e. by Lemma 2.3.9 we deduce from Proposition
2.3.10 (ii)

E
[ˆ T

0

∥∥X̄t

∥∥2

H
dt

]
= E

[ˆ T

0
‖Xt‖2H dt

]
6 E

[
sup
t∈[0,T ]

‖Xt‖2H
ˆ T

0
dt

]

= T E

[
sup
t∈[0,T ]

‖Xt‖2H

]
<∞,

therefore X̄ ∈ L2 ([0, T ]× Ω,dt⊗ P ;H).
Part (ii). By Proposition 2.3.10 (i), (Xt)t∈[0,T ] is càdlàg and hence t 7→ ‖Xt‖pH is right
lower semicontinuous and therefore also t 7→ E

[
‖Xt‖pH

]
. By Lemma 2.3.7 (i), the dt⊗ P -

version X̄ of X is also the weakly star limit of
(
X(nk)

)
k∈N in L∞ ([0, T ] , dt;Lp (Ω;H)).

Hence we have together with Lemma E.2

sup
t∈[0,T ]

E
[
‖Xt‖pH

]
= ess sup

t∈[0,T ]
E
[
‖Xt‖pH

]
= ess sup

t∈[0,T ]
E
[∥∥X̄t

∥∥p
H

]
6 sup
t∈[0,T ]

E
[∥∥X̄t

∥∥p
H

]
6 lim inf

k→∞

(
sup
t∈[0,T ]

∥∥∥X(nk)
t

∥∥∥p
H

)
(2.3.4)
6 C̃

(
E
[
‖X0‖pH

]
+ E

[ˆ T

0
F
p
2
t dt

]
+ 1

)
,
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where C̃ = C̃ (p, γ, θ, C,K, T ) > 0.
Part (iii). Since 0 6 γ < Γ, we can use Lemma 2.3.5 (iii) to see that X(nk) → X̄ weakly
star in Lp ([0, T ] ;L∞ (Ω;H)) for the dt ⊗ P -version X̄ of X. By Proposition 2.3.10 (i),
(Xt)t∈[0,T ] is càdlàg and hence t 7→ ‖Xt‖pH is right lower semicontinuous. Therefore Lemma
E.2 and (2.3.5) yields to

E

[
sup
t∈[0,T ]

‖Xt‖pH

]
= E

[
ess sup
t∈[0,T ]

‖Xt‖pH

]
= E

[
ess sup
t∈[0,T ]

∥∥X̄t

∥∥p
H

]

6 E

[
sup
t∈[0,T ]

∥∥X̄t

∥∥p
H

]
6 lim inf

k→∞
E

[
sup
t∈[0,T ]

∥∥∥X(nk)
∥∥∥p
H

]
(2.3.5)
6 Ĉ

(
E
[
‖X0‖pH

]
+ E

[ˆ T

0
F
p
2
t dt

]
+ 1

)
,

where Ĉ = Ĉ (p, γ, θ, C,CBDG,K, T ) > 0.

2.4. Proof of the Main Theorem – Uniqueness

2.4.1 Proposition. Let (Xt)t∈[0,T ], (Yt)t∈[0,T ] be solutions of 2.1.1 with initial values
X0, Y0 ∈ Lβ+2 (Ω,F0, P ;H) respectively given by Theorem 2.2.1, such that X0 = Y0 P -
a.s. Let 0 6 γ < Γ. Then P -a.s.

Xt = Yt

for every t ∈ [0, T ].

2.4.2 Remark. The two solutions are pathwise unique by the path càdlàg property of X
and Y in H.

Proof. We are P -a.s. in the following situation for t ∈ [0, T ]:

Xt = X0 +

ˆ t

0
A (s,Xs) ds+

ˆ t

0
B (s,Xs) dWs +

ˆ t

0

ˆ
Z
f (s,Xs−, z) µ̄ (ds, dz) ,

Yt = Y0 +

ˆ t

0
A (s, Ys) ds+

ˆ t

0
B (s, Ys) dWs +

ˆ t

0

ˆ
Z
f (s, Ys−, z) µ̄ (ds, dz) .

Let Ȳ the dt ⊗ P -version of Y . We apply Itô’s formula from 2.3.10 (i) together with the
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product rule and P -a.s. come to

e−
´ t
0(K+%(Ȳs))ds ‖Xt − Yt‖2H

= ‖X0 − Y0‖2H +

ˆ t

0
e−
´ s
0 (K+%(Ȳr))dr

(
2 V ∗〈A (s,Xs)−A (s, Ys) , Xs − Ys〉V

+ ‖B (s,Xs)‖2L2
−
(
K + %

(
Ȳs
))
‖Xs − Ys‖2H

)
ds

+

ˆ t

0

ˆ
Z
e−
´ s
0 (K+%(Ȳr))dr ‖f (s,Xs−, z)− f (s, Ys−, z)‖2H µ (ds, dz)

+ 2

ˆ t

0
e−
´ s
0 (K+%(Ȳr))dr 〈Xs − Ys, B (s,Xs) dWs −B (s, Ys) dWs〉H

+ 2

ˆ t

0

ˆ
Z
e−
´ s
0 (K+%(Ȳr))dr 〈Xs − Ys, f (s,Xs−, z)− f (s, Ys−, z)〉H µ̄ (ds, dz) .

We apply expectation to both sides and use Proposition 1.2.7. Then the local monotonicity
condition (A2) leads to

E
[
e−
´ t
0(K+%(Ȳs))ds ‖Xt − Yt‖2H

]
6 E

[
‖X0 − Y0‖2H

]
+ 2E

[ˆ t

0
e−
´ s
0 (K+%(Ȳr))dr 〈Xs − Ys, B (s,Xs) dWs −B (s, Ys) dWs〉H

]
+ 2E

[ˆ t

0

ˆ
Z
e−
´ s
0 (K+%(Ȳr))dr 〈Xs − Ys, f (s,Xs−, z)− f (s, Ys−, z)〉H µ̄ (ds, dz)

]
.

By Corollary 2.3.11 the expectation of the appearing martingales is zero. Therefore we
conclude

E
[
e−
´ t
0(K+%(Ȳs))ds ‖Xt − Yt‖2H

]
6 E

[
‖X0 − Y0‖2H

]
and by the assumption that X0 = Y0 P -a.s.

0 6 E
[
e−
´ t
0(K+%(Ȳs))ds ‖Xt − Yt‖2H

]
6 0 for all t ∈ [0, T ] .

If we can show that
´ T

0

(
K + %

(
Ȳs
))

ds <∞ P -a.s., then we are done. By condition (B3)
ˆ T

0

(
K + %

(
Ȳs
))

ds 6 C

ˆ T

0

(
1 +

∥∥Ȳs∥∥αV ) (1 +
∥∥Ȳs∥∥βH) ds

=C

[
T +

ˆ T

0

∥∥Ȳs∥∥αV ds+

ˆ T

0

∥∥Ȳs∥∥βH ds+

ˆ T

0

∥∥Ȳs∥∥αV ∥∥Ȳs∥∥βH ds

]

6C

[
T +

ˆ T

0

∥∥Ȳs∥∥αV ds+ sup
s∈[0,T ]

∥∥Ȳs∥∥βH (T +

ˆ T

0

∥∥Ȳs∥∥αV ds

)]

6C

[(
1 +

2

β + 2
+

β

β + 2
sup
s∈[0,T ]

(∥∥Ȳs∥∥β+2

H

))(
T +

ˆ T

0

∥∥Ȳs∥∥αV ds

)]
,

(2.4.1)
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where we used Youngs’s inequality with q = β+2
β in the last step. This step is unnecessary

if β = 0, cf. Remark 2.3.6 (i). The right hand side of (2.4.1) is P -a.e. finite, since
Ȳ ∈ Lα ([0, T ]× Ω, dt⊗ P ;V ) and Ȳ ∈ Lp (Ω;L∞ ([0, T ] ;H)) by Lemma 2.3.13 (i) and
2.3.13 (iii) respectively.
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3. Application to Examples

In this chapter we are going to establish existence and uniqueness results to semi-linear
and quasi-linear stochastic partial differential equations. Our main references are [LR10],
[PR07], [BLZ11] and [LS14].

Notation. We denote the i-th spatial derivative ∂
∂xi

by Di. For q > 1 let q′ its dual such
that 1

q + 1
q′ = 1. If a Hilbert space H1 is continuously embedded into another Hilbert space

H2, we denote this with H1 ↪→ H2.

Let H1,p
0 (Λ;R) denote the standard Sobolev space with the Sobolev norm

‖u‖V = ‖u‖
H1,p

0
:=

(ˆ
Λ
|∇u (x)|p dx

) 1
p

, u ∈ H1,p
0 (Λ;R) .

We set Lp (Λ) := Lp (Λ;R) =: H0,p
0 (Λ) and H1,p

0 (Λ;R) =: H1,p
0 (Λ).

Let Λ ⊂ Rd, d ∈ N, an open, bounded domain and let ξ denote the Lebesgue measure on
Λ. For 1 6 p <∞ we consider the Gelfand triple

V := H1,p
0 (Λ;R) ⊂ H := L2 (Λ;R) ⊂

(
H1,p

0 (Λ;R)
)∗

= V ∗,

Let 0 < T < ∞ fixed. Let (Ω,F , P ) be a probability space with normal filtration (Ft)t,
t > 0. Let (Z,Z,m) a measurable space with a σ-finite measure m on it. Fix a stationary
(Ft)-Poisson point processes p on Z and (Ω,F , P ) and let µ̄ the compensated Poisson
random measure to p. Let (Wt)t>0 a U -valued cylindrical Wiener process on (Ω,Ft, P ),
where U is a separable Hilbert space.

3.1. Semilinear stochastic equations

Let p = 2. Then our Gelfand triple has the form

V = H1,2
0 (Λ) ⊂ L2 (Λ) = H ⊂ H−1,2

0 (Λ) = V ∗.

For 1 6 i 6 d let bi, fi : Λ → R and set b := (b1, . . . , bd), f := (f1, . . . , fd). For u ∈ V =
H1,2

0 (Λ) we define the operators

Af (u) := ∆u+ 〈f (u) ,∇u〉Rd ,

Ab (u) := ∆u+ 〈b,∇u〉Rd
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and

Af,f0 (u) := Af (u) + f0 (u)
(

= ∆u+

d∑
i=1

fi (u)Diu+ f0 (u)
)
,

Ab,f0 (u) := Ab (u) + f0 (u)
(

= ∆u+
d∑
i=1

biDiu+ f0 (u)
)
.

Consider the following equation

dX (t) = A (X (t)) dt+B (X (t)) dW (t) +

ˆ
Z
g (X (t−) , z) µ̄ (dz, ds) ,

X (0) = X0,

(3.1.1)

where A :=

{
Af,f0 , if d = 1 or d = 2,

Ab,f0 , else
and W and µ̄ fulfill the same properties as in

Section 2.1. Suppose that there exist CSL, r, s, η > 0 such that the following holds:

(SL1) f = (f1, . . . , fd) : R→ Rd is Lipschitz with Lipschitz constant Lf .

(SL2) f0 : R→ R is continuous with f0 (0) = 0 and satisfies for all x, y ∈ R

|f0 (x)| 6 CSL (1 + |x|r) ,

(f0 (x)− f0 (y)) (x− y) 6 CSL (1 + |y|s) (x− y)2 .

(SL3) B : H1,2
0 (Λ;R)→ L2

(
U ;L2 (Λ;R)

)
satisfies for all v1, v2 ∈ H1,2

0 (Λ;R)

‖B (v1)−B (v2)‖2L2
6 CSL

(
1 +

ˆ
Λ
|∇v2|2 dξ

) ˆ
Λ
|v1 − v2|2 dξ.

(SL4) g : R× Z → R such that for all v, v1, v2 ∈ H1,2
0 (Λ;R) we have

ˆ
Z

ˆ
Λ
|g (v1, z)− g (v2, z)|2 dξ m (dz) 6 CSL

(
1 +

ˆ
Λ
|∇v2|2 dξ

)ˆ
Λ
|v1 − v2|2 dξ,

ˆ
Z

(ˆ
Λ
|g (v, z)|2 dξ

)ζ
m (dz) 6 CSL

(
1 +

(ˆ
Λ
|v|2 dξ

)ζ)

+ η

(ˆ
Λ
|v|2 dξ

)ζ−1(ˆ
Λ
|∇v|2 dξ

)

where ζ =


3, if d = 1,

max {2; r} , if d = 2,
8
3 , else.

62



3.1. Semilinear stochastic equations

3.1.1 Remark. (i) The Lipschitz condition on f implies for all x ∈ R

|f (x)| 6 |f (x)− f (0)|+ |f (0)| 6 Lf |x|+ |f (0)| .

(ii) The weakened Lipschitz condition on B in (SL3) implies linear growth with respect
to ‖·‖H restricted to V : By (SL3) we have for all v ∈ H1,2

0 (Λ)

‖B (v)‖L2
= ‖B (v)−B (0) +B (0)‖L2

6 ‖B (v)−B (0)‖L2
+ ‖B (0)‖L2

6
√
CSL ‖v‖H + ‖B (0)‖L2

.

Set L0 := ‖B (0)‖L2. Then

‖B (v)‖2L2
6 CSL ‖v‖2H + L2

0 + 2
√
CSLL0 ‖v‖H .

Young’s inequality gives

2
(√

CSLL0 ‖v‖H
)
6 2

(
1

2
CSLL

2
0 +

1

2
‖v‖2H

)
,

and we conclude

‖B (v)‖2L2
6 (CSL + 1) ‖v‖2H + (CSL + 1)L2

0.

Hence, with LB := (1 + CSL)
(
1 + L2

0

)
> 0, we have for all v ∈ H1,2

0 (Λ)

‖B (v)‖2L2
6 LB

(
1 + ‖v‖2H

)
.

(iii) We have the same inequality for g. Define Intm (ϕ) :=
´
Z ϕ (z) m (dz). Then for

all u ∈ H1,2
0 (Λ) by Young’s inequality and condition (SL4) we have for L0 :=

Intm

(
‖g (0)‖2H

)
Intm

(
‖g (u)‖2H

)
6 Intm

(
(‖g (u)− g (0)‖H + ‖g (0)‖H)2

)
6 Intm

(
‖g (u)− g (0)‖2H

)
+ L0 + 2 Intm (‖g (u)− g (0)‖H ‖g (0)‖H)

Y oung
6 2 Intm

(
‖g (u)− g (0)‖2H

)
+ 2L0 6 2CSL ‖u‖2H + 2L0,

hence for Lg := 2 (CSL + L0)

ˆ
Z
‖g (v, z)‖2H m (dz) =

ˆ
Z

ˆ
Λ
|g (v, z)|2 dxm (dz) 6 Lg

(
1 +

ˆ
Λ
|v|2 dx

)
= Lg

(
1 + ‖v‖2H

)
.
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(iv) If B is assumed to be Lipschitz from H1,2
0 (Λ) → L2

(
U ;L2 (Λ;R)

)
with respect to

‖·‖H restricted to V as in [BLZ11, Example 4.3] or [LR10, Example 3.2], then B
fulfills (SL3).

Here in our examples, also condition (SL4) has been weakened in the same way con-

trary to [BLZ11, Example 4.3] and we allow
´
Z

(´
Λ |g (v, z)|2 dξ

)ζ
m (dz) also to be

bounded by another term.

It is stated in [BLZ11, Remark 4.4 (3)] that one can weaken (SL3) even to

‖B (v1)−B (v2)‖2L2
6
ˆ

Λ
|∇ (v1 − v2)|2 dx+ CSL

(
1 +

ˆ
Λ
|∇v2|2 dx

)ˆ
Λ
|v1 − v2|2 dx

= ‖v1 − v2‖2V + CSL

(
1 + ‖v2‖2V

)
‖v1 − v2‖2H ,

and by a similiar argument as in (ii) one can get

‖B (v)‖2L2
6 L̄

(
1 + ‖v‖2V + ‖v‖2H

)
for an L̄ > 0. But this condition must be connected to a further assumption on B,
e.g. in the coercivity condition (A3) in the following examples, we can handle L̄ ‖v‖2V
only if L̄ < 1, because Lemma 3.1.2 provides −1 · ‖v‖2V . Since we need that θ > 0,
we would need that 1− L̄ > 0.

Another problem would be the appearing of the ‖v1 − v2‖2V -term in the local mono-
tonicity condition (A2), which we cannot handle there, since % only affects the second
variable v2. A solution is to substitute ‖v1 − v2‖2V with ‖v2‖2V , but this case is already
covered by our condition (SL3).

3.1.2 Lemma. (i) Suppose (SL1) holds and let d ∈ {1; 2; 3}. There exists a constant
C1 > 0 such that for all u, v, w ∈ V = H1,2

0 (Λ,R) we have
ˆ

Λ
|u| |∇v| |w| dξ 6 C1 ‖u‖V ‖v‖V ‖w‖V .

(ii) Suppose (SL1) holds. If d ∈ {1; 2}, then there exists a constant C2 > 0 such that for
all u, v ∈ V

2 V ∗〈Af (u)−Af (v) , u− v〉V 6 −‖u− v‖2V + C2

(
1 + ‖v‖2V

)
‖u− v‖2H .

(iii) Let d = 3 and bi ∈ Ld (Λ) + L∞ (Λ) for 1 6 i 6 d. Then there exists a constant
C3 > 0 such that for all u, v ∈ V we have

2 V ∗〈Ab (u)−Ab (v) , u− v〉V 6 −‖u− v‖2V + C3 ‖u− v‖2H .

Proof. This proof is a slightly modification from [LR14].
Part (i): By Hölder’s inequality for q = 2 = q′ we have

ˆ
Λ
|u| |∇v| |w| dξ 6 ‖v‖V ‖uw‖L2(Λ) . (3.1.2)
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So it is still to show that ‖uw‖L2(Λ) 6 C1 ‖u‖V ‖w‖V for a constant C1 > 0.
Let d = 1. Then by Theorem F.1 (i) and Proposition F.3 there exist constants C2,V , C∞,V >
0 such that V ↪→ L2 (Λ) and V ↪→ L∞ (Λ) respectively. Hence with C1 := C2,V C∞,V we
get

‖uw‖L2(Λ) 6 ‖u‖L∞(Λ) ‖w‖L2(Λ) 6 C1 ‖u‖V ‖w‖V .

Let d = 2. By Theorem F.1 (i) there exists a constant C4,V > 0 such that V ↪→ L4 (Λ).
Then for C1 := C2

4,V and Hölder’s inequality with q = 2 = q′

‖uw‖L2(Λ)

Hölder
6 ‖u‖L4(Λ) ‖w‖L4(Λ) 6 C1 ‖u‖V ‖w‖V .

Let d = 3. There exist constants C6,V > 0, C3,V > 0 such that V ↪→ L6 (Λ) and V ↪→
L3 (Λ) respectively by Theorem F.1 (i), since 1 6 k 6 2d

d−2 = 6 for k ∈ {3, 6}. For
C1 := C6,V C3,V and by Hölder’s inequality with q = 3, q′ = 3

2 we get

‖uv‖L2(Λ)

Hölder
6 ‖u‖L6(Λ) ‖w‖L3(Λ) 6 C1 ‖u‖V ‖w‖V .

Part (ii): Let u, v ∈ V . Integration by parts gives V ∗〈∆ (u− v) , u− v〉V = −‖u− v‖2V .
For i ∈ {1, . . . , d} let Fi, Gi : R → R such that Fi (0) = 0 = Gi (0) and DiFi = fi,
DiGi = Fi. Using that u = 0 = v on ∂Λ since u, v ∈ H1,2

0 (Λ) = V , we have Gi (u− v) = 0
on ∂Λ and we get by the chainrule, integration by parts and Gauss’ divergence theorem

V ∗〈〈f (u− v) ,∇u− v〉Rd , u− v〉V =
d∑
i=1

ˆ
Λ
fi (u− v)Di (u− v) (u− v) dξ

Chain−
=
rule

d∑
i=1

ˆ
Λ
Di (Fi (u− v)) (u− v) dξ

Int. by
=

parts
−

d∑
i=1

ˆ
Λ
Di (Gi (u− v)) dξ

Gauss
= 0.

(3.1.3)

This leads to

V ∗〈〈f (u) ,∇u〉Rd − 〈f (v) ,∇v〉Rd , u− v〉V
= V ∗〈〈f (u) ,∇ (u− v)〉Rd + 〈f (u)− f (v) ,∇v〉Rd , u− v〉V

(3.1.3)
= V ∗〈〈f (u)− f (u− v) ,∇ (u− v)〉Rd + 〈f (u)− f (v) ,∇v〉Rd , u− v〉V

(3.1.4)

Let d = 1. By Proposition F.3 there exists a constant C∞,V > 0 for the continuous em-
bedding V ↪→ L∞ (Λ). Together with the Lipschitz continuity of f and Hölder’s inequality
for q = 2 = q′ the right hand side of (3.1.4) is bounded by

Lf

ˆ
Λ
|v| |∇ (u− v)| |u− v| dξ + Lf

ˆ
Λ
|u− v| |∇v| |u− v| dξ.

6Lf ‖v‖∞ ‖u− v‖V ‖u− v‖H + Lf ‖u− v‖∞ ‖v‖V ‖u− v‖H
6LfC∞,V ‖v‖V ‖u− v‖V ‖u− v‖H + LfC∞,V ‖u− v‖V ‖v‖V ‖u− v‖H
6 ‖u− v‖V ‖u− v‖H · C̄1 (1 + ‖v‖V ) ,
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where C̄1 := 2LfC∞,V .
Let d = 2 and f1, f2 bounded. With Hölder’s inequality for q = 2 = q′ and Lemma F.5 (i)
the right hand side of (3.1.4) can be estimated by

‖f‖∞ ‖u− v‖V ‖u− v‖H + Lf ‖v‖V ‖u− v‖
2
L4(Λ)

6 ‖f‖∞ ‖u− v‖V ‖u− v‖H + 2Lf ‖v‖V ‖u− v‖V ‖u− v‖H
6 ‖u− v‖V ‖u− v‖H · C̄2 (1 + ‖v‖V ) ,

where C̄2 := ‖f‖∞ + 2Lf .
Now let d ∈ {1; 2}. Then by the estimates above, Young’s inequality for q = 2 = q′ and
Lemma B.3 we get

2 V ∗〈Af (u)−Af (v) , u− v〉V = 2 V ∗〈∆ (u− v) + 〈f (u) ,∇u〉Rd − 〈f (v) ,∇v〉Rd , u− v〉V
6− 2 ‖u− v‖2V + 2 · ‖u− v‖V · ‖u− v‖H · C̄d (1 + ‖v‖V )

Y oung
6
B.3
− ‖u− v‖2V +

1

2
· 22−1 · C̄d ‖u− v‖2H

(
1 + ‖v‖2V

)
.

Therefore the claim follows by choosing C2 = C̄d.
Part (iii): Let u, v ∈ V and let C3 > 0 the constant from Lemma F.6 in case ε = 1

2 . Then
by integrating by parts and using that Ab is linear, we get

2 V ∗〈Ab (u)−Ab (v) , u− v〉V = 2

ˆ
Λ

(∆ (u− v)) (u− v) dξ + 2

ˆ
Λ
〈〈b,∇ (u− v)〉Rd , u− v〉 dξ

6− 2

ˆ
Λ
|∇ (u− v)| |∇ (u− v)| dξ + 2

ˆ
Λ
|b| |∇ (u− v)| |u− v| dξ

F.6
6 − 2 ‖u− v‖2V + 2

(
1

2
‖u− v‖2V + C3 ‖u− v‖2H

)
= −‖u− v‖2V + C3 ‖u− v‖2H .

3.1.1. Examples

3.1.3 Example (d = 1). Suppose (SL1) to (SL4) hold for d = 1, r = 3, s = 2 and η < 1
106 .

Then for any initial value X0 ∈ Lp̄
(
Ω,F0, P ;L2 (Λ,R)

)
, where p̄ > 6, equation (3.1.1) with

operator A = Af,f0 has a solution X = (Xt)t∈[0,T ] which fulfills

sup
t∈[0,T ]

E
[
‖X (t)‖6H

]
<∞.

For η = 0 this solution is unique and we have

E

[
sup
t∈[0,T ]

‖X (t)‖6H

]
<∞.
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3.1. Semilinear stochastic equations

Proof. This proof is divided into claims to verify conditions (A1)–(A4) and (B1)–(B3) and
to show that A : V → V ∗ for A = Af,f0 . Finally, we will use these claims to show that
there exists a solution and that this solution is unique. In the situation of Theorem 2.2.1
we will verify the needed conditions for

α = 2, β = 4, γ = η,

θ = 1, K := C0, C := C0

and F :≡ C0, % (v) := C0

(
1 + ‖v‖2V

)(
1 + ‖v‖4H

)
for v ∈ V , where C0 > 0 is a constant

big enough. In the following proof we will see how big C0 has to be.
Claim: γ < θ β+2

2 ·
[
(β + 2) (β + 1) + 2β+1 (2β + 1)

]−1.
Since θ = 1 and β = 4 we calculate

θ
β + 2

2
·
[
(β + 2) (β + 1) + 2β+1 (2β + 1)

]−1
=

3

6 · 5 + 9 · 25
=

1

106
> η = γ.

Claim: Af,f0 : V → V ∗.
Let u, v ∈ V , then by (SL2) with r = 3

| V ∗〈f0 (u) , v〉V | 6
ˆ

Λ
|f0 (u)| |v| dx

6CSL

ˆ
Λ

(
1 + |u|3

)
|v| dx = CSL

ˆ
Λ

(
|v|+ |u|3 |v|

)
dx 6 CSL

ˆ
Λ

(
|v|+ sup

Λ
|v| · sup

Λ
|u| · |u|2

)
dx

=CSL

(
‖v‖L1(Λ) + ‖v‖L∞(Λ) ‖u‖L∞(Λ) ‖u‖

2
H

)
6CSL

(
C1,V ‖v‖V + C2

∞,V ‖v‖V ‖u‖V ‖u‖
2
H

)
6C̃ ‖v‖V

(
1 + ‖u‖V ‖u‖

2
H

)
,

where C1,V is the constant from the continuous embedding V = H1,2
0 (Λ) ↪→ L1 (Λ) (cf.

Theorem F.1), C∞,V > 0 the constant from the embedding V ↪→ L∞ (Λ) (cf. Proposition
F.3) and C̃ = CSL

(
C1,V + C2

∞,V

)
. Furthermore we have

| V ∗〈∆u, v〉V | 6 ‖u‖V ‖v‖V

by Lemma A.3. By Theorem F.1 (i) we have V ↪→ L2 (Λ) with constant C2,V > 0 and
by Proposition F.3 V ↪→ L∞ (Λ) with constant C∞,V > 0. Since f = f1 is Lipschitz by
condition (SL1), with C̄ = |f (0)| ·C2,V +Lf ·C∞,V we conclude by Hölder’s inquality and
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Lemma B.3∣∣
V ∗〈〈f (u) ,∇u〉R , v〉V

∣∣ 6 ˆ
Λ
|f (u)| |∇u| |v| dξ

(SL1)
6
ˆ

Λ
(|f (0)|+ Lf |u|) |∇u| |v| dξ

Hölder
6 |f (0)| ‖u‖V ‖v‖L2(Λ) + Lf ‖v‖∞ ‖u‖V ‖u‖H

6 |f (0)| ‖u‖V · C2,V ‖v‖V + Lf · C∞,V ‖v‖V ‖u‖V (1 + ‖u‖H)

6 C̄ ‖u‖V ‖v‖V + C̄ ‖v‖V ‖u‖V (1 + ‖u‖H)2

B.3
6 C̄ ‖u‖V ‖v‖V + 2C̄ ‖v‖V ‖u‖V

(
1 + ‖u‖2H

)
.

Hence we have∣∣
V ∗〈Af,f0 (u) , v〉V

∣∣ 6 ‖u‖V ‖v‖V + C̃ ‖v‖V
(

1 + ‖u‖V ‖u‖
2
H

)
+ 2C̄

(
‖u‖V ‖v‖V + ‖v‖V ‖u‖V

(
1 + ‖u‖2H

))
= ‖v‖V

(
C̃ + ‖u‖V

(
1 + 4C̄ +

(
C̃ + 2C̄

)
‖u‖2H

))
. (3.1.5)

and we conclude Af,f0 (u) ∈ V ∗.
Claim: (A1) holds.
Let u, v, w ∈ V and λ ∈ R with |λ| 6 1. We have to show

0 = lim
λ→0

(
V ∗〈Af,f0 (u+ λv) , w〉V − V ∗〈Af,f0 (u) , w〉V

)
.

= lim
λ→0

(ˆ
Λ

(
〈∆ (u+ λv) + 〈f (u+ λv) ,∇ (u+ λv)〉R + f0 (u+ λv) , w〉

− 〈∆u+ 〈f (u) ,∇u〉R + f0 (u) , w〉
)

dξ

)
.

Since ∆ is linear, f0 is assumed to be continuous from condition (SL2) and f is continuous,
too (since it is assumed to be Lipschitz in condition (SL1)), we have convergence to zero
for the integrands dξ-a.e. The claim then follows by Lebesgue’s dominated convergence
theorem, because by |λ| 6 1 and conditions (SL1) and (SL2) we have

〈∆ (u+ λv) + 〈f (u+ λv) ,∇ (u+ λv)〉R + f0 (u+ λv) , w〉

= 〈∆u+ λ∆v, w〉+ 〈〈f (u+ λv) ,∇ (u+ λv)〉R , w〉+ 〈f0 (u+ λv) , w〉

6 〈∆u,w〉+ 〈∆v, w〉+ 〈|f (u+ λv)| |∇u| , w〉+ 〈|f (u+ λv)| |∇v| , w〉+ |f0 (u+ λv)| |w|
(SL1)
6

(SL2)
〈∆u,w〉+ 〈∆v, w〉+ (|f (0)|+ Lf (|u|+ |v|)) |∇u| |w|

+ (|f (0)|+ Lf (|u|+ |v|)) |∇v| |w|+ CSL (1 + (|u|+ |v|)r) |w| . (3.1.6)

This term dominates the integrands and it remains to show that it is integrable.ˆ
Λ
|w| dξ = ‖w‖L1(Λ) 6 C1,V ‖w‖V <∞,
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because V ↪→ L1 (Λ) by Theorem F.1 (i) with constant C1,V > 0. With Hölder’s inequality
for q = 2 = q′ we get

ˆ
Λ
〈∆u,w〉 dξ = −

ˆ
Λ
〈∇u,∇v〉 dξ

Hölder
6 |‖u‖V ‖v‖V | <∞.

By Lemma 3.1.2 (i) we have
ˆ

Λ
|v| |∇u| |w| dξ 6 C1 ‖u‖V ‖v‖V ‖w‖V <∞.

Finally, since r = 3, by Lemma B.3, Hölder’s inequality for q = 2 = q′ and Theorem F.1
(i)
ˆ

Λ
(|u|+ |v|)r |w| dξ

B.3
6 4

ˆ
Λ

(
|u|3 + |v|3

)
|w| dξ

Hölder
6 4 ‖w‖L2(Λ)

(
‖u‖3L6(Λ) + ‖v‖3L6(Λ)

)
F.1 (i)

6 4C2,V ‖w‖V C
3
6,V

(
‖u‖3V + ‖v‖3V

)
<∞,

where C2,V > 0 and C6,V are the constants from the embeddings V ↪→ L2 (Λ) and V ↪→
L6 (Λ) respectively. For completeness we also note

ˆ
Λ
|∇u| |w| dξ

Hölder
6 ‖u‖V ‖w‖L2(Λ) 6 C2,V ‖u‖V ‖w‖V <∞.

Claim: (A2) holds.
By (SL2) we have for all u, v ∈ H1,2

0 (Λ;R)

2 V ∗〈f0 (u)− f0 (v) , u− v〉V = 2

ˆ
Λ

(f0 (u)− f0 (v)) (u− v) dξ

(SL2)
6 CSL

ˆ
Λ

(1 + |v|s) (u− v)2 dξ 6 CSL

ˆ
Λ

(
1 + sup

Λ
|v|s
)

(u− v)2 dξ

=CSL

(
1 + ‖v‖sL∞(Λ)

)
‖u− v‖2L2(Λ) .

We have ‖v‖L∞(Λ) 6 C∞,V ‖v‖V , where C∞,V > 0 is the constant from the continuous
embedding V = H1,2

0 (Λ) ↪→ L∞ (Λ). Therefore, since s = 2,

2 V ∗〈f0 (u)− f0 (v) , u− v〉V 6 CSL

(
1 + C∞,V ‖v‖2V

)
‖u− v‖2H .

By Lemma 3.1.2 (ii) we have for all u, v ∈ V

2 V ∗〈Af (u)−Af (v) , u− v〉V 6 C2

(
1 + ‖v‖2V

)
‖u− v‖2H .

Now, by (SL3), for all u, v ∈ V

‖B (u)−B (v)‖2L2
6 CSL

(
1 +

ˆ
Λ
|∇v|2 dξ

)ˆ
Λ
|u− v|2 dx = CSL

(
1 + ‖v‖2V

)
‖u− v‖2H
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and by (SL4)

ˆ
Z
‖g (u, z)− g (v, z)‖2H m (dz) 6

ˆ
Z

ˆ
Λ
|g (u, z)− g (v, z)|2 dξ m (dz)

6CSL

(
1 +

ˆ
Λ
|∇v|2 dξ

) ˆ
Λ
|u− v|2 dξ = CSL

(
1 + ‖v‖2V

)
‖u− v‖2H .

Altogether we see that (A2) is fulfilled:

2 V ∗〈Af,f0 (u)−Af,f0 (v) , u− v〉V + ‖B (u)−B (v)‖2L2
+

ˆ
Z
‖g (u, z)− g (v, z)‖2H m (dz)

6 (C2 + CSL (3 + C∞,V ))
(

1 + ‖v‖2V
)
‖u− v‖2H

6% (v) ‖u− v‖2H 6 (Ft + % (v)) ‖u− v‖2H ,

for all t ∈ [0, T ] since F is non-negative and C0 > C2 + CSL (3 + C∞,V ).
Claim: (A3) holds.
Let u ∈ V . Then by Lemma 3.1.2 (ii)

2 V ∗〈Af (u) , u〉V + ‖u‖2V = 2 V ∗〈Af (u)−Af (0) , u− 0〉V + ‖u− 0‖2V

6C2 ‖u‖2H 6 C2

(
1 + ‖u‖2H

)
and we have by 3.1.1 (ii)

‖B (u)‖2L2
6 LB

(
1 + ‖u‖2H

)
.

Since f0 (0) = 0 we have by (SL2)

2 V ∗〈f0 (u) , u〉V = 2 V ∗〈f0 (u)− f0 (0) , u− 0〉V

62CSL

ˆ
Λ
u2 dξ 6 2C ‖u‖2H 6 2CSL

(
1 + ‖u‖2H

)
.

Summarizing yields to

2 V ∗〈Af,f0 (u) , u〉V + ‖B (u)‖2L2
+ ‖u‖2V

6 (C2 + LB + 2CSL)
(

1 + ‖u‖2H
)

= Ft +K ‖u‖2H ,

for all t ∈ [0, T ], where F :≡ C0 =: K and C0 > C2 + Lb + 2CSL.
Claim: (A4) holds.
Let u ∈ V . For α = 2 and β = 4 we calculate for the operator norm of Af,f0 by (3.1.5)

70



3.1. Semilinear stochastic equations

with Ĉ =
(

2C̃ + 6C̄
)2

and Lemma B.3

‖Af,f0 (u)‖2V ∗ =

 sup
v∈V,
‖v‖V =1

∣∣
V ∗〈Af,f0 (u) , v〉V

∣∣


2

(3.1.5)
6

(
C̃ + ‖u‖V

(
1 + 4C̄ +

(
C̃ + 2C̄

)
‖u‖2H

))2

6Ĉ
(

1 + ‖u‖V
(

1 + ‖u‖2H
))2

B.3
6 2Ĉ

(
1 + ‖u‖2V

(
1 + ‖u‖2H

)2
)
B.3
6 2Ĉ

(
1 + 2 ‖u‖2V

(
1 + ‖u‖4H

))
64Ĉ

(
1 + ‖u‖2V + ‖u‖2V ‖u‖

4
H

)
6
(
Ft +K ‖u‖2V

)(
1 + ‖u‖4H

)
,

where F :≡ C0 =: K and C0 > 4Ĉ.
Claim: (B1) holds.
By Remark 3.1.1 (ii) and (iii) we have for all u ∈ V

‖B (u)‖2L2
+

ˆ
Z
‖g (u, z)‖2H m (dz) 6 (LB + Lg)

(
1 + ‖u‖2H

)
6C

(
1 + Ft + ‖u‖2H

)
,

for all t ∈ [0, T ] where C := C0 ≡: Ft and C0 > LB + Lg.
Claim: (B2) holds.
Let u ∈ V . Since ζ = 3 = 6

2 = β+2
2 we get by (SL4)

ˆ
Z
‖g (u, z)‖β+2

H m (dz) =

ˆ
Z

(ˆ
Λ
|g (u, z)|2 dξ

)ζ
m (dz)

6CSL

(
1 +

(ˆ
Λ
|u|2 dξ

)ζ)
+ η

(ˆ
Λ
|v|2 dξ

)ζ−1(ˆ
Λ
|∇v|2 dξ

)
=CSL

(
1 + ‖u‖β+2

H

)
+ η ‖v‖2(ζ−1)

H ‖v‖2V

6C

(
1 + F

β+2
2

t + ‖u‖β+2
H

)
+ γ ‖v‖βH ‖v‖

α
V ,

(3.1.7)

for all t ∈ [0, T ], where C := C0 ≡: F and C0 > CSL.
Claim: (B3) holds.
Since α = 2, β = 4 and C := C0 we have for u ∈ V

% (u) = C0

(
1 + ‖u‖2V

)(
1 + ‖u‖4H

)
= C (1 + ‖u‖αV )

(
1 + ‖u‖βH

)
.
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Claim: (3.1.1) with A = Af,f0 has a solution.
With the previous claims we can apply Theorem 2.2.1 (i) and get a solutionX = (Xt)t∈[0,T ].
Furthermore we have

sup
t∈[0,T ]

E
[
‖X (t)‖6H

]
<∞.

Claim: If η = 0, then the solution is unique.
Suppose η = γ = 0, then we obtain uniqueness by Theorem 2.2.1 (ii) and

E

[
sup
t∈[0,T ]

‖X (t)‖6H

]
<∞.

3.1.4 Example (d = 2). Suppose (SL1) to (SL4) hold for d = 2, 1 < r < 3, s = 2

and for η <

{
1
40 , if r 6 2,[
4r + 22r+1

]−1
, else.

For i ∈ {1, 2} let fi be bounded. Then for

any p̄ > max {2r; 4} and initial value X0 ∈ Lp̄
(
Ω,F0, P ;L2 (Λ,R)

)
equation (3.1.1) with

operator A = Af,f0 has a solution X = (Xt)t∈[0,T ] which fulfills

sup
t∈[0,T ]

E
[
‖X (t)‖max{2r;4}

H

]
<∞.

If η = 0, then this solution is unique and we have

E

[
sup
t∈[0,T ]

‖X (t)‖max{2r;4}
H

]
<∞.

Proof. The structure of this proof is identical to the proof of Example 3.1.3. We will verify
Theorem 2.2.1 for

α = 2, β = max {2 (r − 1) ; 2} , γ = η

θ = 1, K := C0, C := C0

and F :≡ C0, % (v) = C0

(
1 + ‖v‖2V

)(
1 + ‖v‖βH

)
, where the constant C0 > 0 is big enough,

which we will see in the following proof.
Claim: γ < θ β+2

2 ·
[
(β + 2) (β + 1) + 2β+1 (2β + 1)

]−1.
With Remark 2.2.2 we see that the claim follows, since

γ = η <
1

2

[(
max {2r; 4}+ 2max{2r;4}

)]−1
=
θ

2

[
(β + 2) + 2β+2

]−1
.

Claim: Af,f0 : V → V ∗.
Note that since p = 2 = d we have V ↪→ Lq (Λ) for all q > 1 by Theorem F.1 (i). Let
u, v ∈ V and ε ∈ (0, 1). Then by (SL2) since f0 (0) = 0 and Hölder’s inequality with
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3.1. Semilinear stochastic equations

q = ε+ 1, q′ = ε+1
ε

| V ∗〈f0 (u) , v〉V | 6 CSL

ˆ
Λ

(1 + |u|r) |v| dx

6CSL

(
‖v‖L1(Λ) +

(ˆ
Λ
|u|r(ε+1) dx

) 1
ε+1
(ˆ

Λ
|v|

ε+1
ε dx

) ε
ε+1

)

=CSL

(
‖v‖L1(Λ) + ‖u‖rLr(ε+1)(Λ) ‖v‖L ε+1

ε (Λ)

)
6CSL

(
C1,V ‖v‖V + C ε+1

ε
,V ‖v‖V ‖u‖

r
Lr(ε+1)

)
,

where the constants C1,V , C ε+1
ε
,V> 0 are from the continuous embeddings V ↪→ L1 (Λ)

and V ↪→ L
ε+1
ε (Λ). Since r < 3, we can choose ε so small that ε < 3−r

r−1 . This implies
r < 1 + 2

ε+1 . By Hölder’s inequality and with λ ∈ (0, 1) arbitrary we get

‖u‖rLr(ε+1) =

(ˆ
Λ
|u|λr(ε+1) |u|(1−λ)r(ε+1) dξ

) 1
ε+1

6

(ˆ
Λ
|u|λr(ε+1)q dξ

) 1
q(ε+1)

(ˆ
Λ
|u|(1−λ)r(ε+1)q′

) 1
q′(ε+1)

= ‖u‖λrLλrq(ε+1)(Λ) ‖u‖
(1−λ)r

L(1−λ)rq′(ε+1)(Λ)
.

Therefore, by choosing λ = 1
r and q = 2

2−(r−1)(ε+1) , q
′ = 2

(r−1)(ε+1) we get

‖u‖rLr(ε+1) 6 ‖u‖L(ε+1)q(Λ) ‖u‖
r−1
L2(Λ) 6 Cq,V ‖u‖V ‖u‖

r−1
H ,

where we used Theorem F.1 (i) in the last step. Hence

| V ∗〈f0 (u) , v〉V | 6 C̃ ‖v‖V
(

1 + ‖u‖V ‖u‖
r−1
H

)
,

where C̃ = CSL ·max
{
C1,V ;C ε+1

ε
,V Cq,V

}
. By Lemma A.3 we have

| V ∗〈∆u, v〉V | 6 ‖u‖V ‖v‖V .

Since f is bounded, we get with Hölder’s inequality for q = 2 = q′, Lemma 3.1.2 (i) and
the continuous embedding V ↪→ L2 (Λ) with constant C2,V > 0

∣∣
V ∗〈〈f (u) ,∇u〉R2 , v〉V

∣∣ 6 ˆ
Λ
|f (u)| |∇u| |v| dξ

Hölder
6 ‖f‖∞ ‖u‖V ‖v‖L2(Λ)

3.1.2 (i)

6 C2,V ‖f‖∞ ‖u‖V ‖v‖V .
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Hence by Lemma A.2 and B.3∣∣
V ∗〈Af,f0 (u) , v〉V

∣∣ 6 C̃ ‖v‖V
(

1 + ‖u‖V ‖u‖
r−1
H

)
+ ‖u‖V ‖v‖V

+ C2,V ‖f‖∞ ‖u‖V ‖v‖V

6 C̄ ‖v‖V
(

1 + ‖u‖V + ‖u‖V ‖u‖
r−1
H

)
(3.1.8)

where C̄ = 1 + C̃ + (1 + C2,V ‖f‖∞) and we conclude Af,f0 (u) ∈ V ∗.
Claim: (A1) holds.
Let u, v, w ∈ V , λ ∈ R with |λ| < 1. As in the proof of condition (A1) in Example 3.1.3
we only have to show that (3.1.6) is integrable. To do this we note that since we have
V ↪→ Lq (Λ) for all q > 1 by Theorem F.1 (i), all the embeddings used there also work in
case d = 2, except for ˆ

Λ
(|u|+ |v|)r |w| dξ.

By Hölder’s inequality with q = 2 = q′ we haveˆ
Λ
|u| |w| dξ 6 ‖u‖L2(Λ) ‖w‖L2(Λ) 6 C2

2,V ‖u‖V ‖w‖V <∞,

where C2,V > 0 is the constant from the embedding V ↪→ L2 (Λ). Again, Hölder’s inequal-
ity with q = r+1

r and q′ = r + 1 we get

ˆ
Λ
|v|r |w| dξ 6

(ˆ
Λ
|v|r+1 dξ

) r
r+1
(ˆ

Λ
|w|r+1 dξ

) 1
r+1

= ‖v‖rLr+1(Λ) ‖w‖Lr+1(Λ)

6 Cr+1
r+1,V ‖v‖

r
V ‖w‖V ,

where Cr+1,V > 0 is the constant from the continuous embedding V ↪→ Lr+1 (Λ) by
Theorem F.1 (i).
Claim: (A2) holds.
Let u, v ∈ V . By (SL2) with s = 2, Hölder’s inequality with q = 2, Lemma F.5 (i) and
Young’s inequality we get

V ∗〈f0 (u)− f0 (v) , u− v〉V 6 CSL

ˆ
Λ

(1 + |v|s) (u− v)2 dx

6CSL ‖u− v‖2H + CSL

ˆ
Λ
|v|2 |u− v|2 dx

Hölder
6 CSL ‖u− v‖2H + CSL

(ˆ
Λ
|v|2·2 dx

) 1
2
(ˆ

Λ
|u− v|2·2 dx

) 1
2

=CSL ‖u− v‖2H + CSL ‖v‖2L4(Λ) ‖u− v‖
2
L4(Λ)

F.5 (i)

6 CSL ‖u− v‖2H + 4CSL ‖u‖V ‖u‖H ‖u− v‖H ‖u− v‖V
Y oung
6 CSL ‖u− v‖2H + 8C2

SL ‖u‖
2
V ‖u‖

2
H ‖u− v‖

2
H +

1

2
‖u− v‖2V .
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Now by 3.1.2 (ii), since f1, f2 are bounded and d = 2,

2 V ∗〈Af (u)−Af (v) , u− v〉V
3.1.2 (ii)

6 C2

(
1 + ‖v‖2V

)
‖u− v‖2H − ‖u− v‖

2
V .

By (SL3) we get

‖B (u)−B (v)‖2L2
6 CSL

ˆ
Λ
|u− v|2 dx = CSL

(
1 + ‖v‖2V

)
‖u− v‖2H

and by (SL4)

ˆ
Z
‖g (u, z)− g (v, z)‖2H m (dz) 6 CSL

ˆ
Λ
|u− v|2 dx = CSL

(
1 + ‖v‖2V

)
‖u− v‖2H .

Combining these results leads to (A2):

2 V ∗〈Af,f0 (u)−Af,f0 (v) , u− v〉V + ‖B (u)−B (v)‖2L2
+

ˆ
Z
‖g (u, z)− g (v, z)‖2H m (dz)

6 ‖u− v‖2V − ‖u− v‖
2
V +

(
8C2

SL ‖u‖
2
V ‖u‖

2
H + (2CSL + C2) ‖u‖2V

)
‖u− v‖2H

6Ĉ
(
‖u‖2V ‖u‖

2
H + ‖u‖2V + ‖u‖2H + 1

)
‖u− v‖2H

=Ĉ
(

1 + ‖u‖2V
)(

1 + ‖u‖2H
)
‖u− v‖2H

A.2
6 C0

(
1 + ‖u‖2V

)(
1 + ‖u‖βH

)
‖u− v‖2H

=% (v) ‖u− v‖2H ,

with Ĉ := max
{
C2 + 4CSL; 8C2

SL

}
and C0 > 2

β
2
−1Ĉ.

Claim: (A3) holds.
Let u ∈ V . Lemma 3.1.2 (ii) gives

2 V ∗〈Af (u) , u〉V 6 −‖u‖2V + C2 ‖u‖2H = −θ ‖u‖αV + C2 ‖u‖2H .

By Remark 3.1.1 (ii) we have

‖B (u)‖2L2
6 LB

(
1 + ‖u‖2H

)
= LB + LB ‖u‖2H .

Therefore, since f0 (0) = 0, with condition (SL2)

2 V ∗〈Af,f0 (u) , u〉V + ‖B (u)‖2L2
+ θ ‖u‖αV 6 (C2 + LB) ‖u‖2H + 2CSL

ˆ
Λ
u2 dξ + LB

6LB + (C2 + LB + 2CSL) ‖u‖2H 6 Ft +K ‖u‖2H

for all t ∈ [0, T ], where C0 > C2 + LB + 2CSL. (Remember K = C0, F ≡ C0.)
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Claim: (A4) holds.
Let u ∈ V . For α = 2, the operator norm of Af,f0 can be estimated by (3.1.8) and Lemma
B.3

‖Af,f0 (u)‖
α
α−1

V ∗ =

 sup
v∈V,
‖v‖V =1

∣∣
V ∗〈Af,f0 (u) , v〉V

∣∣


2

(3.1.8)
6

(
C̄
(

1 + ‖u‖V + ‖u‖V ‖u‖
r−1
H

))2 B.3
6 2C̄2

(
1 + ‖u‖2V

(
1 + ‖u‖r−1

H

)2
)

B.3
6 4C̄2

(
1 + ‖u‖2V

(
1 + ‖u‖2(r−1)

H

)) A.2
6 4C̄2

(
1 + 2

β
2(r−1)

−1 ‖u‖2V
(

1 + ‖u‖βH
))

6Ft +K ‖u‖αV +K ‖u‖αV ‖u‖
β
H + Ft ‖u‖βH = (Ft +K‖v‖αV )

(
1 + ‖v‖βH

)
for all t ∈ [0, T ], where F :≡ C0 =: K and C0 > 2

β
2(r−1)

+1
C̄2.

Claim: (B1) holds.
This is exactely the same proof as in Example 3.1.3.
Claim: (B2) holds.
This follows from (3.1.7), since ζ = max {2; r} = max{2r;4}

2 = max{2(r−1);2}+2
2 = β+2

2 .
Claim: (B3) holds.
The definition of % already fulfills (B3).
Claim: (3.1.1) with A = Af,f0 has a solution.
Theorem 2.2.1 (i) applied to (3.1.1) with A = Af,f0 gives us a solution X = (Xt)t∈[0,T ] and
we have

sup
t∈[0,T ]

E
[
‖X (t)‖max{2r;4}

H

]
<∞,

since β + 2 = max {2r; 4}.
Claim: If η = 0, then the solution is unique.
Suppose η = γ = 0, then Theorem 2.2.1 (ii) provides the uniqueness of the solution and
we get

E

[
sup
t∈[0,T ]

‖X (t)‖max{2r;4}
H

]
<∞.

3.1.5 Example (d = 3). Suppose (SL2) to (SL4) hold for d = 3, r = 7
3 , s = 4

3 and
η <

[
2
(

16
3 + 32 3

√
2
)]−1. For i ∈ {1, 2, 3} let bi ∈ Ld (Λ) + L∞ (Λ). Then for any p̄ > 16

3
and initial value X0 ∈ Lp̄

(
Ω,F0, P ;L2 (Λ,R)

)
equation (3.1.1) with operator A = Ab,f0

has a solution X = (Xt)t∈[0,T ] which fulfills

sup
t∈[0,T ]

E
[
‖X (t)‖

16
3
H

]
<∞.
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3.1. Semilinear stochastic equations

If η = 0, then this solution is unique and we have

E

[
sup
t∈[0,T ]

‖X (t)‖
16
3
H

]
<∞.

Proof. The structure of this proof is identical to the proof of Example 3.1.3, but with
A = Ab,f0 . We will verify Theorem 2.2.1 for

α = 2, β =
10

3
, γ = η

θ = 1, K := C0, C := C0

and F :≡ C0, % (v) = C0

(
1 + ‖v‖2V

)(
1 + ‖v‖

10
3
H

)
, where the constant C0 > 0 is big

enough, which we will see in the following proof.
Claim: γ < θ β+2

2 ·
[
(β + 2) (β + 1) + 2β+1 (2β + 1)

]−1.
γ = η has been chosen in a way such that the claim follows from Remark 2.2.2, since

γ = η <

[
2

(
16

3
+ 32

3
√

2

)]−1

=
θ

2

[
(β + 2) + 2β+2

]−1
.

Claim: Ab,f0 : V → V ∗.
Let u, v ∈ V . Condition (SL2) with Hölder’s inequality for q = 2d

d+2

(
= 6

5

)
, q′ = 2d

d−2 (= 6)
gives

| V ∗〈f0 (u) , v〉V | 6 CSL

ˆ
Λ

(1 + |u|r) |v| dx

=CSL

(
‖v‖L1(Λ) +

ˆ
Λ
|u|r |v| dx

)
Hölder
6 CSL

(
‖v‖L1(Λ) +

(ˆ
Λ

(|u|r)q
) 1
q
(ˆ

Λ
|v|q

′
) 1
q′
)

=CSL

(
‖v‖L1(Λ) + ‖u‖r

L
2d
d+2 (Λ)

‖v‖
L

2d
d−2 (Λ)

)
.

By the continuous Sobolev embedding H1,2
0 (Λ) ↪→ Lq (Λ) for all 1 6 q 6 dp

d−p = 6
from Theorem F.1 (i) there exist constants C6,V > 0 and C1,V > 0 such that we have
‖v‖

L
2d
d−2 (Λ)

6 C6,V ‖v‖V and ‖v‖L1(Λ) 6 C1,V ‖v‖V . Hence, for C̃ = max {C1,V ;C6,V ; 1}
we have

| V ∗〈f0 (u) , v〉V | 6 CSLC̃

(
1 + ‖u‖r

L
2d
d+2 (Λ)

)
‖v‖V .

Let λ = 1
r ∈ (0, 1) and q̄ = d+2

d−2 = 5, q̄′ = d+2
4 = 5

4 . We infer

‖u‖rLq(Λ) 6 ‖u‖
λr
Lλqq̄(Λ) ‖u‖

(1−λ)r

L(1−λ)qq̄′

= ‖u‖
L

2dq̄
d+2 (Λ)

‖u‖r−1

L
(r−1)qq̄′

r (Λ)
= ‖u‖

L
2d
d−2 (Λ)

‖u‖r−1

L
(r−1)d

2 (Λ)

= ‖u‖L6(Λ) ‖u‖
4
3

L2(Λ)
6 C6,V ‖u‖V ‖u‖

4
3
H ,
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where C6,V > 0 is the constant from the continuous embedding H1,2
0 (Λ) ↪→ L6 (Λ) as

above and since r = 7
3 . Hence

| V ∗〈f0 (u) , v〉V | 6 CSLC̃
2

(
1 + ‖u‖V ‖u‖

4
3
H

)
‖v‖V .

By Lemma A.3 we have

| V ∗〈∆u, v〉V | 6 ‖u‖V ‖v‖V .

Now by Lemma F.6 there exists a constant C4 = C4 (|Λ|) > 0 such that

∣∣
V ∗〈〈b,∇u〉Rd , v〉V

∣∣ 6 ˆ
Λ
|b| |∇u| |v| dξ

F.6
6
(
‖u‖2V + C4 ‖u‖2H

) 1
2
(
‖v‖2V + C4 ‖v‖2H

) 1
2

F.1 (i)

6
((

1 + C4C
2
2,V

) 1
2 ‖u‖V

)((
1 + C4C

2
2,V

) 1
2 ‖v‖V

)
=
(
1 + C4C

2
2,V

)
‖u‖V ‖v‖V ,

where C2,V > 0 is the constant from the continuous embedding V ↪→ L2 (Λ) = H. Alto-
gether we have∣∣

V ∗〈Ab,f (u) , v〉V
∣∣ 6 | V ∗〈∆u, v〉V |+ ∣∣ V ∗〈〈b,∇u〉Rd , v〉V ∣∣+ | V ∗〈f0 (u) , v〉V |

6 ‖u‖V ‖v‖V +
(
1 + C4C

2
2,V

)
‖u‖V ‖v‖V + CSLC̃

2

(
1 + ‖u‖V ‖u‖

4
3
H

)
‖v‖V

= ‖v‖V
((

2 + C4C
2
2,V

)
‖u‖V + CSLC̃

2

(
1 + ‖u‖V ‖u‖

4
3
H

))
6C̄ ‖v‖V

(
‖u‖V + ‖u‖V ‖u‖

4
3
H + 1

)
(3.1.9)

with C̄ = CSLC̃
2 + C4C

2
2,V + 2 and we see that Ab,f0 (u) ∈ V ∗.

Claim: (A1) holds.
Let u, v, w ∈ V and λ ∈ R with |λ| < 1. We have to show that

0 = lim
λ→0

(
V ∗〈Ab,f0 (u+ λv) , w〉V − V ∗〈Ab,f0 (u) , w〉V

)
= lim

λ→0

(ˆ
Λ

(
〈∆ (u+ λv) + 〈b,∇ (u+ λv)〉R + f0 (u+ λv) , w〉

− 〈∆u+ 〈b,∇u〉R + f0 (u) , w〉
)

dξ

)
.

By the definition of Ab, we see that Ab is linear. Moreover, f0 is assumed to be continuous
in condition (SL2). So we have dξ-a.e. convergence to zero for the integrands. The claim
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3.1. Semilinear stochastic equations

then follows by Lebesgue’s dominated convergence theorem. Since |λ| < 1 and r = 7
3 > 1

we have with Lemma B.3

〈∆ (u+ λv) + 〈b,∇ (u+ λv)〉R + f0 (u+ λv) , w〉

= 〈∆u,w〉+ λ 〈∆v, w〉+ 〈〈b,∇u〉Rd , w〉+ λ 〈〈b,∇v〉Rd , w〉+ 〈f0 (u+ λv) , w〉

6 〈∆u,w〉+ 〈∆v, w〉+ |b| |∇u| |w|+ |b| |∇v| |w|+ |f0 (u+ λv)| |w|
(SL2)
6 〈∆u,w〉+ 〈∆v, w〉+ |b| |∇u| |w|+ |b| |∇v| |w|+ CSL (1 + (|u|+ |v|)r) |w|
B.3
6 〈∆u,w〉+ 〈∆v, w〉+ |b| |∇u| |w|+ |b| |∇v| |w|+ CSL

(
1 + 2

4
3 (|u|r + |v|r)

)
|w|

and this term dominates the integrands. It is only left to show that the term in the last
row is integrable. Integration by parts and Hölder’s inequality with q = 2 = q′ gives

ˆ
Λ
〈∆u,w〉 dξ = −

ˆ
Λ
〈∇u,∇v〉 dξ 6 |‖u‖V ‖v‖V | <∞.

Lemma F.6 delivers for a constant C4 > 0

ˆ
Λ
|b| |∇u| |w| dξ 6

(
‖w‖2V + C4 ‖w‖2H

) 1
2
(
‖u‖2V + C4 ‖u‖2H

) 1
2

6
((

1 + C4C
2
2,V

)
‖w‖2V

) 1
2
((

1 + C4C
2
2,V

)
‖u‖2V

) 1
2

=
(
1 + C4C

2
2,V

)
‖w‖V ‖u‖V <∞,

where C2,V is the constant from the continuous embedding V ↪→ L2 (Λ) = H. Let C1,V > 0
the constant from the embedding V ↪→ L1 (Λ), then

ˆ
Λ
|w| dξ = ‖w‖L1(Λ) 6 C1 ‖w‖V <∞

and for the last term we calculate

ˆ
Λ
|u|r |w| dξ

Hölder
6

(ˆ
Λ
|u|2r dξ

) 1
2
(ˆ

Λ
|w|2 dξ

) 1
2

= ‖u‖
7
3

L
14
3 (Λ)

‖w‖H

6 C2,V C
7
3
14
3
,V
‖u‖

7
3
V ‖w‖V <∞,

where C 14
3
,V > 0 comes from the embedding V ↪→ L

14
3 (Λ). This embedding exists by

Theorem F.1 (i) since

0− 9

14
6 1− 3

2
⇔ 1

2
6

9

14
=

1

2
+

1

7
.
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Claim: (A2) holds.
Let u, v ∈ V . By (SL2) with s = 4

3 , Hölder’s inequality with q = 2 and Lemma F.5 (ii) we
get

V ∗〈f0 (u)− f0 (v) , u− v〉V 6 CSL

ˆ
Λ

(1 + |v|s) (u− v)2 dx

6CSL ‖u− v‖2H + CSL

ˆ
Λ
|v|

4
3 |u− v|2 dx

Hölder
6 CSL ‖u− v‖2H + CSL

(ˆ
Λ
|v|

4
3
·2 dx

) 1
2
(ˆ

Λ
|u− v|2·2 dx

) 1
2

=CSL ‖u− v‖2H + CSL ‖v‖
4
3

L
8
3 (Λ)
‖u− v‖2L4(Λ)

F.5 (ii)

6 CSL ‖u− v‖2H + CSL ‖v‖
4
3

L
8
3 (Λ)
· 2
√

2 ‖u− v‖
1
2
H ‖u− v‖

3
2
V

=CSL ‖u− v‖2H +

((
3

2

) 3
4

2
√

2 · CSL ‖v‖
4
3

L
8
3 (Λ)
‖u− v‖

1
2
H

)((
2

3

) 3
4

‖u− v‖
3
2
V

)
Now by Young’s inequality with q = 4

3 , q
′ = 4((

3

2

) 3
4

2
√

2 · CSL ‖v‖
4
3

L
8
3 (Λ)
‖u− v‖

1
2
H

)((
2

3

) 3
4

‖u− v‖
3
2
V

)

6
3

4

((
2

3

) 3
4

‖u− v‖
3
2
V

) 4
3

+
1

4

((
3

2

) 3
4

2
√

2 · CSL ‖v‖
4
3

L
8
3 (Λ)
‖u− v‖

1
2
H

)4

=
1

2
‖u− v‖2V + 54C4

SL ‖v‖
16
3

L
8
3 (Λ)
‖u− v‖2H .

Let us estimate ‖v‖
16
3

L
8
3 (Λ)

. We repeat that s = 4
3 and set q = 6, q′ = 6

5 and λ = 1
2s ∈ (0, 1).

Then by Hölder’s inequality

‖v‖
16
3

L
8
3 (Λ)

= ‖v‖4sL2s 6 ‖v‖4λsL2λsq ‖v‖4(1−λ)s

Ls(1−λ)sq′

= ‖v‖2L6 ‖v‖
10
3

L2 .

Since we have d = 3, we can use the well known Sobolev embedding H1,p
0 (Λ) ↪→ L

dp
d−p (Λ).

So, for p = 2 there exists a constant C6,V such that

‖v‖2L6 6 C2
6,V ‖v‖

2
V .

Hence

V ∗〈f0 (u)− f0 (v) , u− v〉V 6
1

2
‖u− v‖2V + 54C4

SLC
2
6,V ‖v‖

2
V ‖v‖

10
3
H ‖u− v‖

2
H + CSL ‖u− v‖2H

6
1

2
‖u− v‖2V +

(
CSL + 54C4

SLC
2
6,V ‖v‖

2
V ‖v‖

10
3
H

)
‖u− v‖2H .
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Lemma 3.1.2 (iii) gives

2 V ∗〈Ab (u)−Ab (v) , u− v〉V 6 −‖u− v‖2V + C3 ‖u− v‖2H .

By (SL3) we have

‖B (u)−B (v)‖2L2
6 CSL

(
1 +

ˆ
Λ
|∇v|2 dξ

) ˆ
Λ
|u− v|2 dξ = CSL

(
1 + ‖v‖2V

)
‖u− v‖2H

and by (SL4)

ˆ
Z
‖g (u, z)− g (v, z)‖2H m (dz) 6 CSL

ˆ
Λ
|u− v|2 dξ = CSL

(
1 + ‖v‖2V

)
‖u− v‖2H .

Therefore

2 V ∗〈Ab,f0 (u)−Ab,f0 (v) , u− v〉V + ‖B (u)−B (v)‖2L2
+

ˆ
Z
‖g (u, z)− g (v, z)‖2H m (dz)

6− ‖u− v‖2V + ‖u− v‖2V + C3 ‖u− v‖2H + 2CSL

(
1 + ‖v‖2V

)
‖u− v‖2H

+ 2

(
CSL + 54C4

SLC
2
6,V ‖v‖

2
V ‖v‖

10
3
H

)
‖u− v‖2H

=

(
C3 + 2CSL

(
1 + ‖v‖2V

)
+ 2

(
CSL + 54C4

SLC
2
6,V ‖v‖

2
V ‖v‖

10
3
H

))
‖u− v‖2H

6% (v) ‖u− v‖2H ,

with C0 > max
{
C3 + 4CSL; 108 · C4

SLC
2
6,V

}
.

Claim: (A3) holds.
Let u ∈ V . Condition (SL2) with f0 (0) = 0 gives

2 V ∗〈f0 (u) , u〉V = 2 V ∗〈f0 (u)− f0 (0) , u− 0〉V 6 2CSL

ˆ
Λ
u2 dξ 6 2CSL

(
1 + ‖u‖2H

)
.

Then by Lemma 3.1.2 (iii) and Remark 3.1.1 (ii) we get

2 V ∗〈Ab,f0 (u) , u〉V + ‖B (u)‖2L2
+ ‖u‖2V 6 C3 ‖u‖2H + (2CSL + L)

(
1 + ‖u‖2H

)
6 (C3 + 2CSL + L)

(
1 + ‖u‖2H

)
6 Ft +K ‖u‖2H

for all t ∈ [0, T ], and with C0 > C3 + 2CSL + L.
Claim: (A4) holds.
Let u ∈ V . With α = 2 we can calculate the operator norm of Ab,f0 (u) by (3.1.9) and
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Lemma B.3

‖Ab,f0 (u)‖
α
α−1

V ∗ =

 sup
v∈V,
‖v‖V =1

∣∣
V ∗〈Ab,f0 (u) , v〉V

∣∣


2

(3.1.9)
6 C̄2

(
‖u‖V + ‖u‖V ‖u‖

4
3
H + 1

)2 B.3
6 2C̄2

(
1 +

(
‖u‖V + ‖u‖V ‖u‖

4
3
H

)2
)

B.3
6 4C̄2

(
1 + ‖u‖2V + ‖u‖2V ‖u‖

8
3
H

)
6 4C̄2

(
1 + ‖u‖2V + ‖u‖2V ‖u‖

8
3
H + ‖u‖

8
3
H

)
and with Lemma A.2 and B.3 we get

‖Ab,f0 (u)‖
α
α−1

V ∗ 6 4C̄2
(

1 + ‖u‖2V
)(

1 + ‖u‖
8
3
H

)
A.2
6 4C̄2

(
1 + ‖u‖2V

)(
1 + ‖u‖

8
3
H

) 5
4 B.3
6 2

9
4 C̄2

(
1 + ‖u‖2V

)(
1 + ‖u‖

10
3
H

)
6 (Ft +K ‖v‖αV )

(
1 + ‖v‖βH

)
for all t ∈ [0, T ], where Ft := C0 =: K, β = 10

3 and C0 > 2
9
4 C̄2.

Claim: (B1) holds.
See the proof of (B1) in Example 3.1.3.
Claim: (B2) holds.
This follows from (3.1.7), since ζ = 8

3 = 1
2 ·

16
3 = β+2

2 .
Claim: (B3) holds.
By the definition of %, α, β and C we have for all v ∈ V

% (v) = C0

(
1 + ‖v‖2V

)(
1 + ‖v‖

10
3
H

)
= C (1 + ‖v‖αV )

(
1 + ‖v‖βH

)
.

Claim: (3.1.1) with A = Ab,f0 has a solution.
Since all conditions are fulfilled, we can apply Theorem 2.2.1 to get a solution X =
(Xt)t∈[0,T ] to (3.1.1) and by 2.2.1 (i) we have

sup
t∈[0,T ]

E
[
‖X (t)‖

16
3
H

]
<∞.

Claim: If η = 0, then the solution is unique.
Suppose η = γ = 0, then Theorem 2.2.1 (ii) is applicable and we obtain uniqueness and

E

[
sup
t∈[0,T ]

‖X (t)‖
16
3
H

]
<∞.
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3.1.6 Remark. It is not necessary to claim η = 0 to get the uniqueness result in Examples
3.1.3, 3.1.4 and 3.1.5. A sufficient condition is 0 6 η < Γ, where Γ is the constant from
(2.2.1) (cf. page 17), i.e.

0 6 η <

{[
2
(
9C2

BDG + 53
)]−1

, in Example 3.1.3,[
16C2

BDG + 46 3
√

2 + 26
3

]−1
, in Example 3.1.5,

and, in Example 3.1.4,

0 6 η <

{[
12C2

BDG + 26
]−1

, if r 6 2,

2r
[
r2
(
12C2

BDG + 8
)

+ r
(
4r+1 − 4

)
− 3 · 4r

]−1
, else.

3.2. Quasi-linear stochastic equations: p-Laplacian

In this section let d ∈ N with d > 3. Again, let Λ ⊂ Rd be an open, bounded domain. Let
2 6 p <∞. We have the Gelfand triple

V := H1,p
0 (Λ) ⊂ H := L2 (Λ) ⊂ H−1,p

0 (Λ) = V ∗.

Consider the following equation:

dX (t) =

(
d∑
i=1

Di

(
|DiX (t)|p−2DiX (t)

)
+ f0 (X (t))

)
dt+B (X (t)) dW (t)

+

ˆ
Z
f (X (t−) , z) µ̄ (dt,dz) ,

X (0) = X0.

(3.2.1)

Suppose that there exist CQL, r, s > 0 such that the following holds:

(QL1) f0 : R→ R is continuous, f0 (0) = 0 and f0 satisfies for all x, y ∈ R

|f0 (x)| 6 CQL (1 + |x|r) ,

(f0 (x)− f0 (y)) (x− y) 6 CQL (1 + |y|s) |x− y|h .

(QL2) B : H1,p
0 (Λ;R)→ L2

(
U ;L2 (Λ;R)

)
satisfies for all v1, v2 ∈ H1,p

0 (Λ;R)

‖B (v1)−B (v2)‖2L2
6 CQL

(
1 +

ˆ
Λ
|∇v2|p dx

)ˆ
Λ
|v1 − v2|2 dx.

(QL3) f : R× Z → R such that for all v, v1, v2 ∈ H1,p
0 (Λ;R) we haveˆ

Z

ˆ
Λ
|f (v1, z)− f (v2, z)|2 dxm (dz) 6 CQL

(
1 +

ˆ
Λ
|∇v2|p dx

)ˆ
Λ
|v1 − v2|2 dx,

ˆ
Z

(ˆ
Λ
|f (v, z)|2 dx

)ζ
m (dz) 6 CQL

(
1 +

(ˆ
Λ
|v|2 dx

)ζ)

+ η

(ˆ
Λ
|v|2 dξ

)ζ−1(ˆ
Λ
|∇v|p dξ

)
,
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where ζ > 1 and 0 6 η <

{
22−p (2ζ + 4ζ

)−1
, if d < p,

21−p (2ζ + 4ζ
)−1

, else.

We define the operators

Ap (u) := div
(
|∇u|p−2∇u

)
,

Ap,f0 (u) := Ap (u) + f0 (u) .

3.2.1 Lemma. There exists a constant C1 = C1 (p) > 0 such that for all u, v ∈ V we have

V ∗〈Ap (u)−Ap (v) , u− v〉V 6 −C1 ‖u− v‖pV .

Proof. Let u, v ∈ V . By Lemma C.4 we have

V ∗〈Ap (u)−Ap (v) , u− v〉V

=−
ˆ

Λ

〈
|∇u (x)|p−2∇u (x)− |∇v (x)|p−2∇v (x) ,∇u (x)−∇v (x)

〉
Rd

dx

C.4
6 − 2−(p−2)

ˆ
Λ
|∇u (x)−∇v (x)|p dx = −C1 ‖u− v‖pV ,

where C1 = C1 (p) = 2−(p−2).

3.2.2 Remark. As in Remark 3.1.1 (ii) and (iii) there exist constants LB, Lf > 0 such
that for all v ∈ V we have

‖B (v)‖2L2
6 LB

(
1 + ‖v‖2H

)
,

ˆ
Z
‖f (v, z)‖2H m (dz) 6 Lf

(
1 + ‖v‖2H

)
.

3.2.1. Examples

3.2.3 Example (d < p). Let d < p. Suppose conditions (QL1) to (QL3) hold for 1 6 s 6 p,
r := p − 1 and h := 2. Then for any initial value X0 ∈ Lp̄ (Ω,F0, P ;H), where p̄ > 2ζ,
equation (3.2.1) has a solution X = (Xt)t∈[0,T ] and this solutions satisfies

sup
t∈[0,T ]

E
[
‖X (t)‖2ζH

]
<∞.

If η = 0, then this solution is unique and we have

E

[
sup
t∈[0,T ]

‖X (t)‖2ζH

]
<∞.
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Proof. Similarily to the proof of Example 3.1.3, this proof is divided into claims to verify
conditions (A1)–(A4) and (B1)–(B3) and to show that Ap,f0 : V → V ∗. Finally, we will
use these claims to show that there exists a solution and that this solution is unique. We
will verify Theorem 2.2.1 for

α = p, β = 2 (ζ − 1) , γ = η,

θ = 2C1, K := C0, C := C0

and F :≡ C0, % (v) := C0

(
1 + ‖v‖pV

)
for v ∈ V , where C1 = C1 (p) = 22−p > 0 is the

constant from Lemma 3.2.1 and C0 > 0 is big enough, which we will see in the following
proof. Let us note that β = 2 (ζ − 1) > 0.
Claim: γ < θ β+2

2 ·
[
(β + 2) (β + 1) + 2β+1 (2β + 1)

]−1.
Since

γ = η < 22−p
(

2ζ + 4ζ
)−1

=
θ

2

[
(β + 2) + 2β+2

]−1
,

the assertion follows from Remark 2.2.2.
Claim: Ap,f0 : V → V ∗.
Let u, v ∈ V . By condition (QL1) with r = p− 1

| V ∗〈f0 (u) , v〉V | 6 CQL

ˆ
Λ

(1 + |u|r) |v| dξ

6CQL

ˆ
Λ

(
1 +

(
sup

Λ
|u|
)r)

|v| dξ = CQL

(
1 + ‖u‖rL∞(Λ)

)
‖v‖L1(Λ)

6CQL
(

1 + Cp−1
∞,V ‖u‖

p−1
V

)
‖v‖L1(Λ) ,

where C∞,V = C∞,V (p, d, |Λ|) > 0 from Proposition F.3. With C1,V = C1,V (p, d, |Λ|) > 0
we also have

‖v‖L1(Λ) 6 C1,V ‖v‖V .

Furthermore we have by the Cauchy-Schwarz inequality and Hölder’s inequality

∣∣
V ∗〈Ap (u) , v〉V

∣∣ 6 ∣∣∣∣ˆ
Λ

〈
|∇u|p−2∇u,∇v

〉
Rd

dξ

∣∣∣∣
6
ˆ

Λ

∣∣∣|∇u|p−2∇u
∣∣∣ |∇v| dξ =

ˆ
Λ
|∇u|p−1 |∇v| dξ

Hölder
6

(ˆ
Λ
|∇u|(p−1) p

p−1 dξ

) p−1
p
(ˆ

Λ
|∇v|p dξ

) 1
p

= ‖u‖p−1
V ‖v‖V . (3.2.2)

Hence∣∣
V ∗〈Ap,f0 (u) , v〉V

∣∣ 6 (CQLC1,V +
(

1 + CQLC1,V C
p−1
∞,V

)
‖u‖p−1

V

)
‖v‖V , (3.2.3)

and we conclude Ap,f0 (u) ∈ V ∗.
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Claim: (A1) holds.
Let u, v, w ∈ V and λ ∈ R with |λ| 6 1. We have to show

0 = lim
λ→0

(
V ∗〈Ap,f0 (u+ λv) , w〉V − V ∗〈Ap,f0 (u) , w〉V

)
= lim
λ→0

(ˆ
Λ

(〈
|∇ (u+ λv)|p−2∇ (u+ λv) + f0 (u+ λv) ,∇w

〉
−
〈
|∇u|p−2∇u+ f0 (u) ,∇w

〉)
dξ

)
.

The integrands converge to 0 dξ-a.s. since f0 is continuous. (A1) follows by Lebesgue’s
monotone convergence theorem, because by the Cauchy-Schwarz inequality, condition
(QL1) with r = p− 1, Lemma B.3 and |λ| 6 1 we have∣∣∣〈|∇ (u+ λv)|p−2∇ (u+ λv) + f0 (u+ λv) ,∇w

〉∣∣∣
6
(
|∇ (u+ λv)|p−1 + |f0 (u+ λv)|

)
|∇w|

6
(
|∇u+ λ∇v|p−1 + CQL

(
1 + |u+ λv|p−1

))
|∇w|

B.3
6 2p−2

(
|∇u|p−1 + |λ∇v|p−1 + CQL

(
|u|p−1 + |λv|p−1

)
+ CQL22−p

)
|∇w|

62p−2
(
|∇u|p−1 + |∇v|p−1 + CQL

(
|u|p−1 + |v|p−1

)
+ CQL22−p

)
|∇w|

and this term dominates the integrands. We still have to show that this term is integrable.ˆ
Λ
|∇u|p−1 |∇w| dξ

Hölder
6 ‖u‖p−1

V ‖w‖V <∞

and ˆ
Λ
|u|p−1 |∇w| dξ

Hölder
6

(ˆ
Λ
|u|p dξ

) p−1
p

‖w‖V = ‖u‖p−1
Lp(Λ) ‖w‖V

6 Cp−1
p,V ‖u‖

p−1
V ‖w‖V <∞,

where Cp,V = Cp,V (p, d, |Λ|) > 0 is the constant from Poincaré’s inequality F.4.
Claim: (A2) holds.
Let u, v ∈ V . Condition (QL1) with h = 2 gives us

V ∗〈f0 (u)− f0 (v) , u− v〉V =

ˆ
Λ

(f0 (u)− f0 (v)) (u− v) dξ

(QL1)
6 CQL

ˆ
Λ

(1 + |v|s) |u− v|2 dξ 6 CQL

(
1 + ‖v‖sL∞(Λ)

)
‖u− v‖2H .

Now by Proposition F.3 we have ‖v‖L∞(Λ) 6 C∞,V ‖v‖V , where C∞,V = C∞,V (d, p, |Λ|) >
0. Young’s inequality leads to

CQL

(
1 + ‖v‖sL∞(Λ)

)
‖u− v‖2H 6 CQL (1 + C∞,V ‖v‖sV ) ‖u− v‖2H

Y oung
6 CQL

(
1 +

p− s
p

C
p
p−s
∞,V +

s

p
‖v‖pV

)
‖u− v‖2H

6CQL

(
1 +

p− s
p

C
p
p−s
∞,V

)(
1 +

s

p

)(
1 + ‖v‖pV

)
‖u− v‖2H .
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By Lemma 3.2.1 and conditions (QL2) and (QL3) we get

2 V ∗〈Ap,f0 (u)−Ap,f0 (v) , u− v〉V + ‖B (u)−B (v)‖2L2
+

ˆ
Z
‖f (u, z)− f (v, z)‖2H m (dz)

6−2C1 ‖u− v‖pV︸ ︷︷ ︸
60

+3CQL

(
1 +

ˆ
Λ
|∇v|p dx

) ˆ
Λ
|u− v|2 dx

+ 2CQL

(
1 +

p− s
p

C
p
p−s
∞,V

)(
1 +

s

p

)(
1 + ‖v‖pV

)
‖u− v‖2H

63CQL

(
1 +

p− s
p

C
p
p−s
∞,V

)(
1 +

s

p

)(
1 + ‖v‖pV

)
‖u− v‖2H

6 (Ft + % (v)) ‖u− v‖2H ,

for all t ∈ [0, T ], since F ≡ C0 and C0 > 3CQL

(
1 + p−s

p C
p
p−s
∞,V

)(
1 + s

p

)
.

Claim: (A3) holds.
Let v ∈ V . Then by condition (QL1), since f0 (0) = 0,

V ∗〈f0 (v) , v〉V = V ∗〈f0 (v)− f0 (0) , v − 0〉V =

ˆ
Λ

(f0 (v)− f0 (0)) (v − 0) dξ

(QL1)
6 CQL

ˆ
Λ
|v|2 dξ = CQL ‖v‖2H .

By Remark 3.2.2 and Lemma 3.2.1 we conclude

2 V ∗〈Ap,f0 (v) , v〉V + ‖B (v)‖2L2
+ 2C1 ‖v‖pV 6 LB

(
1 + ‖v‖2H

)
+ 2CQL ‖v‖2H

6LB + (LB + 2CQL) ‖v‖2H 6 Ft +K ‖v‖2H ,

for all t ∈ [0, T ], since Ft ≡ C0, K = C0 and C0 > LB + 2CQL.
Claim: (A4) holds.
Let u ∈ V . By the definition of the norm of the operator Ap,f0 (u) : V → R, with α = p
and with (3.2.3)

‖Ap,f0 (u)‖
α
α−1

V ∗ =

 sup
v∈V,
‖v‖V =1

∣∣
V ∗〈Ap,f0 (u) , v〉V

∣∣


p
p−1

6
[
CQLC1,V +

(
1 + CQLC1,V C

p−1
∞,V

)
‖u‖p−1

V

] p
p−1

6C̃
(

1 + ‖u‖p−1
V

) p
p−1

,

where C̃ =
[
max

{
CQLC1,V ; 1 + CQLC1,V C

p−1
∞,V

}] p
p−1 . Since p

p−1 > 1 we have by Lemma

87



Chapter 3. Application to Examples

B.3

‖Ap,f0 (u)‖
α
α−1

V ∗ 6 C̃
(

1 + ‖u‖p−1
V

) p
p−1

B.3
6 2−(p−1)C̃

(
1 + ‖u‖pV

)
6 (Ft +K ‖u‖αV )

(
1 + ‖u‖βH

)
︸ ︷︷ ︸

>1

for all t ∈ [0, T ] with K := C0 ≡: Ft and C0 > 2−(p−1)C̃.
Claim: (B1) holds.
Let u ∈ V . Then by Remark 3.2.2

‖B (v)‖2L2
+

ˆ
Z
‖f (v, z)‖2H m (dz) 6 2 (LB + Lf )

(
1 + ‖v‖2H

)
6 C

(
1 + Ft + ‖v‖2H

)
,

for all t ∈ [0, T ], since F is non-negative and C := C0 > 2 (LB + Lf ).
Claim: (B2) holds.
Let u ∈ V . Since β = 2 (ζ − 1) and α = p, we have together with condition (QL3)

ˆ
Z
‖f (v, z)‖β+2

H m (dz) =

ˆ
Z

(ˆ
Λ
|f (v, z)|2 dξ

) 1
2

(β+2)

m (dz)

=

ˆ
Z

(ˆ
Λ
|f (v, z)|2 dξ

)ζ
m (dz)

(QL3)
6 CQL

(
1 +

(ˆ
Λ
|v|2 dξ

)ζ)
+ η

(ˆ
Λ
|v|2 dξ

)ζ−1(ˆ
Λ
|∇v|p dξ

)
=CQL

(
1 + ‖v‖2ζH

)
+ η ‖v‖2(ζ−1)

H ‖v‖pV = CQL

(
1 + ‖v‖β+2

H

)
+ η ‖v‖βH ‖v‖

α
V

6C

(
1 + F

β+2
2

t + ‖v‖β+2
H

)
+ η ‖v‖βH ‖v‖

α
V

for all t ∈ [0, T ] since F :≡ C0 is non-negative and C := C0 > CQL.
Claim: (B3) holds.
This is clear by the definition of % and α: For v ∈ V we have

% (v) = C0

(
1 + ‖v‖pV

)
6 C

(
1 + ‖v‖pV

) (
1 + ‖v‖βH

)
︸ ︷︷ ︸

>1

.

Claim: (3.2.1) has a solution.
Theorem 2.2.1 gives us a solution X = (Xt)t∈[0,T ]. With 2.2.1 (i) we have

sup
t∈[0,T ]

E
[
‖Xt‖2ζH

]
<∞.
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3.2. Quasi-linear stochastic equations: p-Laplacian

Claim: If η = 0, then the solution is unique.
Suppose γ = η = 0. Then by 2.2.1 (ii) our solution is unique and we have

E

[
sup
t∈[0,T ]

‖Xt‖2ζH

]
<∞.

3.2.4 Example (d > p). Let d > p. Suppose conditions (QL1) to (QL3) hold for 1 6

s 6 min
{
p(p−h)
p−2 ; (h−2)p2

(p−2)(d−p)

}
, r := p − 1 and 2 < h < p. Then for any initial value

X0 ∈ Lp̄ (Ω,F0, P ;H), where p̄ > 2ζ, equation (3.2.1) has a solution X = (Xt)t∈[0,T ] and
this solutions satisfies

sup
t∈[0,T ]

E
[
‖X (t)‖2ζH

]
<∞.

If η = 0, then this solution is unique and we have

E

[
sup
t∈[0,T ]

‖X (t)‖2ζH

]
<∞.

Proof. The structure of this proof is identical to the proof of Example 3.2.3. The conditions
of Theorem 2.2.1 will be verified for

α = p, β = 2 (ζ − 1) , γ = η,

θ = C1, K := C0, C := C0

and F :≡ C0, % (v) := C0

(
1 + ‖v‖pV

)
for v ∈ V , where C1 = C1 (p) = 22−p > 0 is the

constant from Lemma 3.2.1. C0 > 0 is a constant big enough. We will see in the following
proof how big C0 has to be.
Claim: γ < θ β+2

2 ·
[
(β + 2) (β + 1) + 2β+1 (2β + 1)

]−1.
Since

γ = η < 21−p
(

2ζ + 4ζ
)−1

=
θ

2

[
(β + 2) + 2β+2

]−1
,

the assertion follows from Remark 2.2.2.
Claim: Ap,f0 : V → V ∗.
Let u, v ∈ V . Condition (QL1) with r = p − 1 gives us together with Hölder’s inequality
for q = p

p−1 , q
′ = p

| V ∗〈f0 (u) , v〉V | 6 CQL

ˆ
Λ

(1 + |u|r) |v| dξ

6CQL

(
‖v‖L1(Λ) +

ˆ
Λ
|u|p−1 |v| dξ

)
Hölder
6 CQL

(
‖v‖L1(Λ) + ‖u‖p−1

Lp(Λ) ‖v‖Lp(Λ)

)
.
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Let Cp,V > 0 the constant from Poincaré’s inequality F.4 for V ↪→ Lp (Λ) and let C1,V > 0

the constant from Theorem F.1 for V ↪→ L1 (Λ) (since 0 6 1+d
(

1− 1
p

)
holds true). Then

we can estimate

| V ∗〈f0 (u) , v〉V | 6 CQL

(
‖v‖L1(Λ) + ‖u‖p−1

Lp(Λ) ‖v‖Lp(Λ)

)
6CQL

(
C2
p,V + C1,V

) (
1 + ‖u‖p−1

V

)
‖v‖V .

Together with (3.2.2) we obtain∣∣
V ∗〈Ap,f0 (u) , v〉V

∣∣ 6 ‖u‖p−1
V ‖v‖V + CQL

(
C2
p,V + C1,V

) (
1 + ‖u‖p−1

V

)
‖v‖V ,

6
(
CQL

(
C2
p,V + C1,V

)
+ 1
) (

1 + ‖u‖p−1
V

)
‖v‖V (3.2.4)

and we conclude Ap,f0 (u) ∈ V ∗.
Claim: (A2) holds.
By Theorem F.1 (i) we have V ↪→ La (Λ) continuously for all 1 6 a 6 dp

d−p , because d > p.
We define

λ : =
p (h− 2)

h (p− 2)
, p0 :=

dp

d− p
.

Then λ ∈ (0, 1) and p0 > 2, because 2 < h < p. Let pλ such that

1

pλ
=

1− λ
2

+
λ

p0
.

Especially we have pλ ∈ (2, p0). To see that h < pλ we refer to Lemma A.1. Now let
u, v ∈ V . Condition (QL1) gives us with Hölder’s inequality for q = pλ

pλ−h , q
′ = pλ

h

V ∗〈f0 (u)− f0 (v) , u− v〉V =

ˆ
Λ

(f0 (u)− f0 (v)) (u− v) dξ

(QL1)
6 CQL

ˆ
Λ

(1 + |v|s) |u− v|h dξ = CQL

[ˆ
Λ

1 · |u− v|h dξ +

ˆ
Λ
|v|s |u− v|h dξ

]
Hölder
6 CQL

[
|Λ|

pλ−h
pλ ‖u− v‖hLpλ (Λ) + ‖v‖s

L

spλ
pλ−h (Λ)

‖u− v‖hLpλ (Λ)

]
6CQL,Λ ‖u− v‖hLpλ (Λ)

(
1 + ‖v‖s

L

spλ
pλ−h (Λ)

)
,

where CQL,Λ = CQL

(
1 + |Λ|

pλ−h
pλ

)
. By our choice of λ and pλ we can apply Lemma F.7

and get

‖u− v‖hLpλ (Λ) 6 ‖u− v‖
h(1−λ)
L2(Λ)

‖u− v‖λhLp0 (Λ)

6 Cλhp0,V ‖u− v‖
h(1−λ)
L2(Λ)

‖u− v‖λhV ,
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where Cp0,V > 0 is the constant from the continuous embedding V ↪→ Lp0 . Let C1 > 0 the
constant from Lemma 3.2.1 and set

C̄1 :=
p

λh
C
λh
p

1

(
=
p− 2

h− 2
C
h−2
p−2

1

)
.

Then by multiplying with 1 = C̄1 · C̄−1
1

V ∗〈f0 (u)− f0 (v) , u− v〉V

6
[
C̄1 ‖u− v‖λhV

]
·
[
C̄−1

1 CQL,ΛC
λh
p0,V ‖u− v‖

h(1−λ)
L2(Λ)

(
1 + ‖v‖s

L

spλ
pλ−h (Λ)

)]
Y oung
6 C1 ‖u− v‖pV + C̃

[
‖u− v‖h(1−λ)

L2(Λ)

(
1 + ‖v‖s

L

spλ
pλ−h (Λ)

)] p−2
p−h

where we used Young’s inequality with q = p
λh = p−2

h−2 , q
′ = p

p−λh = p−2
p−h and

C̃ =
p− h
p− 2

(
C̄−1

1 CQL,ΛC
λh
p0,V

) p−2
p−h

.

We calculate (
‖u− v‖h(1−λ)

L2(Λ)

) p−2
p−h

= ‖u− v‖2L2(Λ) .

Since 2 < h < p we have p−2
p−h > 1 and Lemma B.3 gives(

1 + ‖v‖s
L

spλ
pλ−h (Λ)

) p−2
p−h B.3

6 2
p−2
p−h−1

(
1 + ‖v‖

s(p−2)
p−h

L

spλ
pλ−h (Λ)

)
= 2

p−2
p−h−1

(
1 + ‖v‖s1Ls2 (Λ)

)
,

where
s1 := s · (p− 2)

p− h
6
p (p− h)

p− 2
· p− 2

p− h
= p

by our condition on s, and

s2 := s · pλ
pλ − h

6
(h− 2) p2

(p− 2) (d− p)
· pλ
pλ − h

A.1
=

dp

d− p
= p0 and

s2 > 1 · pλ
pλ − h︸ ︷︷ ︸

>1

> 1.

Therefore V ↪→ Ls2 (Λ) by Theorem F.1 (i) with constant Cs2,V > 0. Then Lemma A.2
with s1 6 p and Lemma B.3 give(

1 + ‖v‖s1Ls2 (Λ)

) F.1 (i)

6 (1 + Cs2,V ‖v‖
s1
V )

6 (1 + Cs2,V (1 + ‖v‖V )s1)
A.2
6 (1 + Cs2,V (1 + ‖v‖V )p)

B.3
6
(
1 + 2p−1Cs2,V

(
1 + ‖v‖pV

))
6
(
1 + 2p−1Cs2,V

) (
1 + ‖v‖pV

)
.
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Altogether by Lemma 3.2.1 and conditions (QL2) and (QL3) we get

2 V ∗〈Ap,f0 (u)−Ap,f0 (v) , u− v〉V + ‖B (u)−B (v)‖2L2
+

ˆ
Z
‖f (u, z)− f (v, z)‖2H m (dz)

6− 2C1 ‖u− v‖pV + 2C1 ‖u− v‖pV +
(
1 + 2p−1Cs2,V

)
2
p−2
p−h C̃ ‖u− v‖2L2(Λ)

(
1 + ‖v‖pV

)
+ CQL

(
1 + ‖v‖pV

)
‖u− v‖2L2(Λ) + CQL

(
1 + ‖v‖pV

)
‖u− v‖2L2(Λ)

=
((

1 + 2p−1Cs2,V
)

2
p−2
p−h C̃ + 2CQL

) (
1 + ‖v‖pV

)
‖u− v‖2L2(Λ)

6% (v) ‖u− v‖2H 6 (Ft + % (v)) ‖u− v‖2H

for all t ∈ [0, T ], since F is non-negative and C0 >
(
1 + 2p−1Cs2,V

)
2
p−2
p−h C̃ + 2CQL.

Claim: (A3) holds.
Let v ∈ V . Condition (QL1) with f0 (0) = 0 gives

V ∗〈f0 (v) , v〉V = V ∗〈f0 (v)− f0 (0) , v − 0〉V =

ˆ
Λ

(f0 (v)− f0 (0)) (v − 0) dξ

(QL1)
6 CQL

ˆ
Λ
|v|h dξ = CQL ‖v‖hLh(Λ) .

As in the previous claim we set

λ :=
p (h− 2)

h (p− 2)
, p0:=

dp

d− p
> 2.

Then λ ∈ (0, 1) and let pλ such that

1

pλ
=

1− λ
2

+
λ

p0
.

By Hölder’s inequality with q = pλ
pλ−h and q′ = pλ

h and Lemma F.7 we obtain for CQL,Λ =

CQL |Λ|
pλ−h
pλ

CQL ‖v‖hLh(Λ)

Hölder
6 CQL |Λ|

pλ−h
pλ ‖v‖hLpλ (Λ)

F.7
6 CQL,Λ ‖v‖h(1−λ)

L2(Λ)
‖v‖λhLp0 (Λ)

F.1 (i)

6 CQL,ΛC
λh
p0,V ‖v‖

h(1−λ)
L2(Λ)

‖v‖λhV ,

where Cp0,V > 0 is the constant from the continuous embedding V ↪→ Lp0 (Λ) = L
dp
d−p (Λ),

cf. Theorem F.1 (i). Let C1 > 0 the constant from Lemma 3.2.1 and set

C̄1 :=
1

2

p

λh
C
λh
p

1
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3.2. Quasi-linear stochastic equations: p-Laplacian

Young’s inequality with q = p
λh and q′ = p

p−λh yields to

CQL,ΛC
λh
p0,V ‖v‖

h(1−λ)
L2(Λ)

‖v‖λhV =
[
C̄−1

1 CQL,ΛC
λh
p0,V ‖v‖

h(1−λ)
L2(Λ)

] [
C̄1 ‖v‖λhV

]
Y oung
6

p− λh
p

[
C̄−1

1 CQL,ΛC
λh
p0,V ‖v‖

h(1−λ)
L2(Λ)

] p
p−λh

+
λh

p

[
C̄1 ‖v‖λhV

] p
λh

= C̃ ‖v‖2L2(Λ) +
1

2
C1 ‖v‖pV 6 C̃

(
1 + ‖v‖2H

)
+

1

2
C1 ‖v‖pV .

Hence by Remark 3.2.2 and Lemma 3.2.1 we conclude

2 V ∗〈Ap,f0 (v) , v〉V + ‖B (v)‖2L2
+ (2C1 − C1) ‖v‖pV 6

(
C̃ + LB

)(
1 + ‖v‖2H

)
6Ft +K ‖v‖2H

for all t ∈ [0, T ], since Ft ≡ C0, K = C0 and C0 > C̃ + LB.
Claim: (A4) holds.
Let u ∈ V . The operator norm for Ap,f0 (u) : V → R with α = p can be estimated with
(3.2.4) and Lemma B.3

‖Ap,f0 (u)‖
α
α−1

V ∗ =

 sup
v∈V,
‖v‖V =1

∣∣
V ∗〈Ap,f0 (u) , v〉V

∣∣


p
p−1

(3.2.4)
6

[(
CQL

(
C2
p,V + C1,V

)
+ 1
) (

1 + ‖u‖p−1
V

)] p
p−1

B.3
6
(
CQL

(
C2
p,V + C1,V

)
+ 1
) p
p−1 · 2−(p−1)

(
1 + ‖u‖pV

)
6 (Ft +K ‖u‖αV )

(
1 + ‖u‖βH

)
︸ ︷︷ ︸

>1

for all t ∈ [0, T ] with K = C0 and C0 > 2−(p−1)
(
CQL

(
C2
p,V + C1,V

)
+ 1
) p
p−1 and since F

is non-negative.
Claim: (A1), (B1), (B2) and (B3) holds.
We refer to the proof of Example 3.2.3, since α, β, γ and %, K, F and r = p−1 are identical
to the situation there and all the estimates are independent of d and do not involve s or h.
Claim: (3.2.1) has a solution.
Theorem 2.2.1 gives us a solution X = (Xt)t∈[0,T ]. With 2.2.1 (i) we have

sup
t∈[0,T ]

E
[
‖Xt‖2ζH

]
<∞.

Claim: If η = 0, then the solution is unique.
Suppose γ = η = 0. Then by 2.2.1 (ii) our solution is unique and we have

E

[
sup
t∈[0,T ]

‖Xt‖2ζH

]
<∞.
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3.2.5 Remark. (i) Suppose ζ = 1. Then in the proof of Examples 3.2.3 and 3.2.4 we
have β = 0. Therefore, by Remark 2.3.6 (ii), we can even choose η = γ < θ to get
existence, i.e.

0 6 η <

{
23−p, if d < p,

22−p, else.

(ii) To gather uniqueness in Examples 3.2.3 and 3.2.4 we do not need to assume that
η = 0. We only need that 0 6 η < Γ, where Γ is the constant from (2.2.1) (cf. page
17), i.e. we can assume

0 6 η <
24−pζ

4ζ
((

3C2
BDG + 2

)
ζ + 4ζ − 1

)
− 3 · 4ζ

in Example 3.2.3 and, in Example 3.2.4,

0 6 η <
23−pζ

4ζ
((

3C2
BDG + 2

)
ζ + 4ζ − 1

)
− 3 · 4ζ

.
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A. Supplements

The next Lemma is a supplement to the proof of (A2) in Example 3.2.4.

A.1 Lemma. Let 2 < p < d, 2 < h < p,

p0 :=
dp

d− p
, λ :=

p (h− 2)

h (p− 2)

and pλ such that

1

pλ
=

1− λ
2

+
λ

p0
.

Then

(i) h < pλ.

(ii) (h−2)p2

(p−2)(d−p) ·
pλ

pλ−h = p0.

Proof. (i): From the definition of pλ we deduce

pλ =
2p0

(1− λ) p0 + 2λ
.

Then we see that

h < pλ =
2p0

(1− λ) p0 + 2λ
⇔ h (1− λ) p0 + 2λh < 2p0.

But by the definition of λ and since h− 2 > 0 and p < d

h (p− 2)− p (h− 2)

p− 2
p0 + 2

p (h− 2)

p− 2
= h (1− λ) p0 + 2λh < 2p0

⇔ 2hp− 2hp0 + 2pp0 − 4p

p− 2
< 2p0 ⇔ hp− hp0 − 2p < −2p0

⇔ p (h− 2) < p0 (h− 2) ⇔ p < p0 =
dp

d− p
⇔ dp− p2 < dp

and this is obviously true, so (i) holds.
(ii): First we calculate

pλ
pλ − h

= 2p0 [2p0 − (1− λ) p0h− 2λh]−1

= 2p0 (p− 2) [2p0 (p− 2)− hp0 (p− 2) + p0p (h− 2)− 2p (h− 2)]−1

= p0 (p− 2) [(h− 2) (p0 − p)]−1 .
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Then
pλ

pλ − h
· (h− 2) p2

(p− 2) (d− p)
=

p0p
2

(p0 − p) (d− p)
= p0

because

p2 = p2 + dp− dp = dp− p (d− p) =

(
dp

d− p
− p
)

(d− p) = (p0 − p) (d− p) .

A.2 Lemma. Let 1 6 a <∞ and 0 6 p 6 q <∞. Then

ap 6 aq.

Proof.

ap = exp (ln (ap)) = exp (p ln a)
ln a>0
6 exp (q ln a) = aq.

A.3 Lemma. Let d ∈ N, Λ ⊂ Rd an open, bounded domain. Consider the Gelfand triple

V := H1,2
0 (Λ) ⊂ H := L2 (Λ) ⊂

(
H1,2

0 (Λ)
)∗

:= V ∗.

Let C∞0 (Λ) be the set of all infinitely differentiable real-valued functions with compact
support in Λ. Then the Laplace operator ∆: C∞0 (Λ) → C∞0 (Λ) extends uniquely to an
operator A : V → V ∗ and we have

| V ∗〈∆u, v〉V | 6 ‖u‖V ‖v‖V .

Proof. Cf. [PR07, Example 4.1.7]. Since C∞0 (Λ) ⊂ L2 (Λ) ⊂
(
H1,2

0 (Λ)
)∗

, we have

∆: C∞0 (Λ) → V ∗. Further let us note that C∞0 (Λ) is dense in H1,2
0 (Λ). By integrat-

ing by parts and Hölder’s inequality, we have for u, v ∈ C∞0 (Λ)

| V ∗〈∆u, v〉V | = |〈∆u, v〉H | =
∣∣∣∣−ˆ

Λ
〈∇u (ξ) ,∇v (ξ)〉 dξ

∣∣∣∣
6

(ˆ
Λ
|∇u (ξ)|2 dξ

) 1
2
(ˆ

Λ
|∇v (ξ)|2 dξ

) 1
2

= ‖u‖V ‖v‖V .

Hence we have

‖∆u‖V ∗ 6 ‖u‖V

and therefore ∆ extends uniquely to an operator A : V → V ∗ with A = ∆.
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B. Inequalities

The most important inequalities that we used throughout this thesis are collected in this
section.

B.1 Lemma (Young’s inequality). Let a, b > 0, 1 < p <∞, p′ = p
p−1 . Then

ab 6
1

p
ap +

1

p′
bp
′
.

Proof. See [Alt06, (1-11), p. 52].

B.2 Lemma (Generalized Hölder’s inequality). Let (X,X , µ) a measurable space, m ∈ N
and pi, q ∈ [1,∞] for i ∈ {1, . . . ,m} such that

m∑
i=1

1

pi
=

1

q
,

with 1
r = 0 if r = ∞. Further let ui ∈ Lpi (X,µ;R) for all i ∈ {1, . . . ,m}. Then we have

u1 · · ·um ∈ Lq (X,µ;R) and∥∥∥∥∥
m∏
i=1

ui

∥∥∥∥∥
Lq(X,µ;R)

6
m∏
i=1

‖ui‖Lpi (X,µ;R) .

Proof. See [Alt06, Lemma 1.16].

B.3 Lemma. Let a, b ∈ R and 1 6 p <∞. Then

(a+ b)p 6 2p−1 (ap + bp) .

Proof. Since p > 1, the mapping x 7→ xp is convex. With Jensen’s inequality we get

(a+ b)p = 2p
(

1

2
a+

1

2
b

)p
6 2p

(
1

2
ap +

1

2
bp
)

= 2p−1 (ap + bp) .

B.4 Lemma (Bihari’s inequality). Let g : [0,∞[→ [0,∞[ be a non-decreasing, continuous
function with g ((0,∞)) ⊂ (0,∞). Let A > 0 and suppose f, h : [0,∞[ → [0,∞[ are
measurable functions with h ∈ L1

loc ([0,∞[) and such that for all t > 0 we have

f (t) 6 A+

ˆ t

0
h (s) g (f (s)) ds. (B.1)

Let x0 ∈ (0,∞) fixed such that G (x) :=
´ x
x0

ds
g(s) < ∞ for all x ∈ (0,∞). Furthermore let

T0 ∈ (0,∞) such that G (A) +
´ T0

0 h (s) ds belongs to the domain of the inverse function of
G, namely G−1 : G ((0, 1))→ (0,∞). Then for all 0 6 t 6 T0 we have

f (t) 6 G−1

(
G (A) +

ˆ t

0
h (s) ds

)
. (B.2)
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Proof. See [LR13, Lemma 2.1] and [Bih56].

From Bihari’s inequality we can deduce the well known Gronwall’s inequality even for
non-continuous, but measurable functions.

B.5 Lemma (Gronwall’s inequality). Let 0 < T < ∞ and let f : [0, T ] → R measurable
and non-negative. Let A > 0, b ∈ (0,∞) such that

f (t) 6 A+

ˆ t

0
bf (s) ds, t ∈ [0, T ] . (B.3)

Then for all t ∈ [0, T ]

f (t) 6 Aebt.

Proof. Consider g (x) := bx, h ≡ 1. Then g is continuous and, since b > 0, g is non-
decreasing and obeys g ((0,∞)) ⊂ (0,∞). In the situation of Lemma B.4 we set x0 = 1
and see that

G (x) =

ˆ x

1

1

g (s)
ds =

1

b
[ln (·)]x1 =

lnx

b
<∞

for all x ∈ (0,∞). The inverse function of G is given by G−1 (y) = eby, because

G−1 (G (x)) = eb
ln x
b = x for all x ∈ (0,∞) .

Therefore we can choose T0 := T , see also [LR10, Remark 2.1]. In this setup, (B.3) implies
(B.1):

f (t) 6 A+

ˆ t

0
bf (s) ds = A+

ˆ t

0
h (s) g (f (s)) ds for all t ∈ [0, T ] .

Then by Bihari’s inequality we get for all 0 6 t 6 T

f (t)
(B.2)
6 G−1

(
G (A) +

ˆ t

0
h (s) ds

)
= eb(

lnA
b

+t)

= Aebt.

C. Inequalities on Hilbert spaces

Let (H, ‖ · ‖H) be a Hilbert space with inner product 〈·, ·〉H and standard norm ‖ · ‖H =√
〈·, ·〉H .

C.1 Lemma. Let p ∈ [2,∞). There exists a constant C = C (p) > 0 such that for all
x, y ∈ H we have∣∣∣‖x+ h‖pH − ‖x‖

p
H − p‖x‖

p−2
H 〈x, h〉H

∣∣∣ 6 C
(
‖x‖pH + ‖h‖pH

)
.

If p = 2 then we have ∣∣∣‖x+ h‖2H − ‖x‖
2
H − 2 〈x, h〉H

∣∣∣ = ‖h‖2H .
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C.2 Remark. By [MR13, Lemma 2.2] Lemma C.1 holds true for 1 6 p 6 2. More
precisely, there exists a constant C = C (p) > 0 such that for any x, y ∈ H we have

‖x+ y‖pH − ‖x‖
p
H − p ‖x‖

p
H 〈x, y〉H 6 C ‖y‖pH .

To prove Lemma C.1 we need the following Lemma.

C.3 Lemma. Let p <∞. For any x, y ∈ R the following inequalities hold:

(i) |x+ y|p 6 2p−1 |xp + yp|, if p > 1.

(ii) (x+ y)p − xp 6 2p−2
(
p yxp−1 + yp

) (
6 2p−1

(
p yxp−1 + yp

) )
, if p > 2.

Proof. (i) For p = 1 there is nothing to show. For p > 1 we use the generalized Hölder
inequality to see that

|x+ y|p = |1 · x+ 1 · y|p 6
(
|1 + 1|

p−1
p |xp + yp|

1
p

)p
= 2p−1 |xp + yp| .

(ii) We use the fundamental theorem of calculus and (i) to obtain

(x+ y)p − xp =

ˆ x+y

x

d

dt
(tp) dt = p

ˆ x+y

x
tp−1 dt

= p

ˆ y

0
(x+ t)p−1 dt

(i)

6 p2p−2

ˆ y

0

(
xp−1 + tp−1

)
dt

= 2p−2

(
pyxp−1 +

ˆ y

0
ptp−1 dt

)
= 2p−2

(
p yxp−1 + yp

)
.

Proof of Lemma C.1. For given and fixed p ∈ [2,∞) and x, h ∈ H we set g (t) = ‖x+th‖pH .
Then

d

dt
g (t) = p ‖x+ th‖p−2

H

(
t‖h‖2H + 〈x, h〉H

)
and∣∣∣‖x+ h‖pH − ‖x‖

p
H − p‖x‖

p−2
H 〈x, h〉H

∣∣∣ =
∣∣g (1)− g (0)− g′ (0)

∣∣ 6 |g (1)− g (0)|+
∣∣g′ (0)

∣∣ .
First step: We first apply the Cauchy-Schwarz-inequality to |g′ (0)| and then Young’s
inequality to obtain

∣∣g′ (0)
∣∣ = p‖x‖p−2

H |〈x, h〉H |
C.−S.
6 p‖x‖p−1

H ‖h‖H
Y oung
6 p

(
p− 1

p
‖x‖pH +

1

p
‖x‖pH

)
6 C1

(
‖x‖pH + ‖h‖pH

)
,

where C1 = C1 (p) = p− 1.
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Second step: According to the mean value theorem there exists t0 ∈ [0, 1] such that
g (1)− g (0) = g′ (t0). Using the triangle inequality we have
1

p

∣∣g′ (t0)
∣∣ = ‖x+ t0h‖p−2

H

∣∣t0‖h‖2H + 〈x, h〉H
∣∣ 6 (‖x‖H + t0‖h‖H)p−2 (t0‖h‖2H + |〈x, h〉H |

)
6

(
‖x‖H + sup

t∈[0,1]
t ‖h‖H

)p−2(
sup
t∈[0,1]

t ‖h‖2H + |〈x, h〉H |

)
= (‖x‖H + ‖h‖H)p−2 ‖h‖2H + (‖x‖H + ‖h‖H)p−2 |〈x, h〉H | . (C.1)

Now we apply Young’s inequality to the first summand of (C.1) and then Lemma C.3 and
obtain

(‖x‖H + ‖h‖H)p−2 ‖h‖2H 6
p− 2

p
(‖x‖H + ‖h‖H)p +

2

p
‖h‖pH

C.3
6 2p−1 p− 2

p

(
‖x‖pH + ‖h‖pH

)
+

2

p
‖h‖pH

6 C2

(
‖x‖pH + ‖h‖pH

)
with C2 = C2 (p) = 2p−1 p−1

p since p − 1 > 1 implies 2p−1 (p− 1) > 2 and 2p−1 (p− 1) >

2p−1 (p− 2).
Again, the Cauchy-Schwarz inequality, Young’s inequality (used two times) and Lemma
C.3 used on the second summand of (C.1) imply

(‖x‖H + ‖h‖H)p−2 |〈x, h〉H |
C.−S.
6 (‖x‖H + ‖h‖H)p−2 ‖x‖H‖h‖H

6
p− 2

p
(‖x‖H + ‖h‖H)p +

2

p
‖x‖H‖h‖H

C.3
6 2p−1 p− 2

p

(
‖x‖pH + ‖h‖pH

)
+

2

p
‖x‖

p
2
H‖h‖

p
2
H

6 2p−1 p− 2

p

(
‖x‖pH + ‖h‖pH

)
+

2

p

(
1

2
‖x‖pH +

1

2
‖h‖pH

)
= C3

(
‖x‖pH + ‖h‖pH

)
,

where C3 = C3 (p) = 1
p

(
2p−1 (p− 2) + 1

)
.

Third step: We combine the results from step one and two and finally have

|g (1)− g (0)|+
∣∣g′ (0)

∣∣ 6 (C1 + pC2 + pC3)
(
‖x‖pH + ‖h‖pH

)
.

Setting C = (C1 + pC2 + pC3) = p+2p−1 (2p− 3), we finish the proof of the first statement.
Fourth step: The second statement follows immediately by

‖x+ h‖2H = ‖x‖2H + ‖h‖2H + 2 〈x, h〉H .

C.4 Lemma. For any p > 0 and x, y ∈ H we have〈
‖x‖pH x− ‖y‖

p
H y, x− y

〉
H

> 2−p ‖x− y‖p+2
H .

Proof. See [Liu09, Lemma 3.1].
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D. Tools on processes

Let (Ω,F , P ) be a probability space and (Ft)t∈[0,T ], 0 < T < ∞, be a filtration on F .
Let (H, ‖·‖H) be a separable Hilbert space andM2

T (H) the space of all square integrable
martingales on H with respect to (Ft)t∈[0,T ] up to time T .

D.1 Proposition. Let M ∈M2
T (H). Then there exists a unique predictable process 〈M〉

of bounded variation such that

‖M (t)‖2H − 〈M〉t , t > 0,

is a martingale.

Proof. See [PZ07, Remark 3.46].

D.2 Proposition. Let M a càdlàg, local (Ft)-martingale in H. Let τn a sequence of
partitions

{
0 6 tn1 < · · · < tnmn

}
such that limn→∞ t

n
mn →∞ and the for the mesh of τn we

have limn→∞ sup16k6mn−1

∣∣tnk − tnk+1

∣∣ = 0. Then

mn−1∑
k=1

∥∥∥Mtnk∧t −Mtnk+1∧t

∥∥∥2

H

converges in L1 (Ω, P ).

Proof. See [Mé82, Theorem 18.6].

D.3 Definition. The limiting process in the previous Proposition is denoted by

[M ]t

for t ∈ [0, T ] and called the square bracket of M .

The next theorem will show that hitting times of càdlàg processes are stopping times.

D.4 Theorem. Let X be an Ft-adapted right-continuous process with values in H. Then

τR = inf {t > 0 | ‖X (t)‖ > R} , R > 0,

is a stopping time.

Proof. See [Kal97, Theorem 6.7].

D.5 Theorem (Burkholder-Davis-Gundy inequality). Let (Mt)t>0 be a real-valued, càdlàg
local martingale on a probability space (Ω,F , P ) with respect to a normal filtration (Ft)t∈[0,T ]

with M0 = 0 and let p > 1.

(i) There exists a constant C = C (p) > 0 such that for every stopping time τ 6 T we
have

E

[
sup
t∈[0,τ ]

|Mt|p
]
6 C E

[
[M ]

p
2
τ

]
.
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(ii) If E
[
[M ]

1
2
T

]
<∞, then (Mt)t∈[0,T ] is a martingale.

Proof. Part (i): Apply [Kal97, Theorem 23.12] to the stopped process (Mt∧τ )t∈[0,T ]. (Also
see [KS91, Theorem 3.28] for the continuous case.)
Part (ii): Cf. [Kal97, Corollary 15.9]. This proof is quoted from a newer, not yet published
version of [PR07, Proposition D.0.1]: Let τn : Ω → [0, T ] be a sequence of stopping times
such that (Mt∧τn)t∈[0,T ] is a martingale and limn→∞ τn = T . Then for all t ∈ [0, T ]

lim
n→∞

Mt∧τn = Mt P -a.s.

By (i) we have

sup
n∈N
|Mt∧τn | 6 sup

s∈[0,T ]
|Ms| ∈ L1 (Ω;R) .

Lebesgue’s dominated convergence theorem hence gives us for all t ∈ [0, T ]

lim
n→∞

Mt∧τn = Mt in L1 (Ω;R)

and so (ii) follows.

E. Miscellaneous tools

E.1 Theorem (Banach-Alaoglu). Let X be a Banach space. Then the closed unit ball

X∗ ⊃ B1 (0) = {f ∈ X∗ | ‖f‖X∗ 6 1}

is weakly-star compact.

Proof. See [Bre10, Theorem 3.16].

E.2 Lemma. Let (Ω,F , P ) be a probability space and 0 < T <∞. Let f : Ω× [0, T ]→ R
right lower semicontinuous. Then

ess sup
t∈[0,T ]

f (t) = sup
t∈[0,T ]

f (t) .

Proof. By the definition of the essential supremum, we always have ess sup f 6 sup f .
Therefore we suppose that

α := ess sup
t∈[0,T ]

f (t) < sup
t∈[0,T ]

f (t) .

Then there exists δ > 0 such that

α− δ < sup
t∈[0,T ]

f (t)
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and for all n ∈ N we can find tn ∈ [0, T ] with

α− δ − 1

n
< f (tn) .

Since f is right lower semicontinuous, for all n ∈ N there exists an εn > 0 such that

α− δ − 1

n
< f (t) for all t ∈ [tn, tn + εn) .

This set is not a Lebesgue-zero-set, hence for all n ∈ N we can find sn ∈ [tn, tn + εn) with

f (sn) 6 ess sup
t∈[0,T ]

f (t)
(

= α
)
.

Now
α− δ − 1

n
< f (sn) 6 α.

Letting n→∞ we see the contradiction α− δ < α. Hence the assertion follows.

F. Some important embeddings and interpolations

The next theorem summarizes the most important Sobolev embeddings.

F.1 Theorem. Let d ∈ N, Λ ⊂ Rd open and bounded. Let m,n ∈ N0 and 1 6 p, q < ∞
and set H0,p

0 (Λ) := Lp (Λ).

(i) If

m− d

p
> n− d

q
and m > n,

then there exists a constant C = C (m,n, p, q, d, |Λ|) > 0 such that for all u ∈
Hm,p

0 (Λ) we have

‖u‖Hn,q
0 (Λ) 6 C ‖u‖Hm,p

0 (Λ) .

In other words, Hm,p
0 (Λ) ↪→ Hn,q

0 (Λ) is a continuous embedding.

(ii) If

m− d

p
> n− d

q
and m > n,

then the embedding Hm,p
0 (Λ) ↪→ Hn,p

0 (Λ) is continuous and compact, i.e. Hm,p
0 (Λ) b

Hn,p
0 (Λ).

Proof. See [Alt06, 8.9 Einbettungssatz in Sobolev-Räumen, p. 328].
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F.2 Remark. In the situation of Theorem F.1, all the embeddings hold for the Sobolev
spaces Hm,p (Λ) if Λ ⊂ Rd is open, bounded and has smooth boundary.

F.3 Proposition. Let d ∈ N, Λ ⊂ Rd open and bounded and (1 6) d < p < ∞. Then
there exists a constant C = C (d, p, |Λ|) > 0 such that for all u ∈ H1,p

0 (Λ)

‖u‖L∞(Λ) 6 C ‖∇u‖Lp(Λ) .

Proof. See [Alt06, 8.10 Satz, p. 330].

An important special case is Poincaré’s inequality:

F.4 Corollary (Poincaré). Let d ∈ N, Λ ⊂ Rd open and bounded and 1 6 p < ∞. Then
there exists a constant C = C (p, d, |Λ|) > 0 such that for all u ∈ H1,p

0 (Λ;R)

ˆ
Λ
|u|p dξ 6 C

ˆ
Λ
|∇u|p dξ.

Proof. Apply Theorem F.1 with m = 1, n = 0, p = q.

F.5 Lemma. Let d ∈ N, Λ ⊂ Rd open and bounded and let 1 6 p < ∞. Set Lp :=
Lp (Λ) := Lp (Λ,R) and Hm,p

0 (Λ) := Hm,p
0 (Λ,R) for m ∈ N.

(i) If d = 2, then for all u ∈ H1,2
0

‖u‖4L4 6 4 ‖u‖2L2 ‖∇u‖2L2 .

(ii) If d = 3, then for all u ∈ H1,2
0

‖u‖4L4 6 8 ‖u‖L2 ‖∇u‖3L2 .

Proof. See [MS02, Lemma 2.1] and succeeding remark.

F.6 Lemma. Let Λ ⊂ Rd be an open, bounded domain with d ∈ N and d > 3. Let
g ∈ Ld (Λ) + L∞ (Λ) and ε > 0. Then there exists a constant C = C (ε, d, |Λ|) > 0 such
that for all u, v ∈ H1,2

0 (Λ)

ˆ
Λ
|g| |u| |∇v| dξ 6

(
ε ‖u‖2

H1,2
0 (Λ)

+ C ‖u‖2L2(Λ)

) 1
2
(
ε ‖v‖2

H1,2
0 (Λ)

+ C ‖v‖2L2(Λ)

) 1
2
.

In particular, for ε = 1 we have C = C (d, |Λ|) and
ˆ

Λ
|g| |u| |∇v| dξ 6

(
‖u‖2

H1,2
0 (Λ)

+ C ‖u‖2L2(Λ)

) 1
2
(
‖v‖2

H1,2
0 (Λ)

+ C ‖v‖2L2(Λ)

) 1
2
.

Proof. This proof is taken from [LR14]. Define

C0 : =
1

ε
inf

{
R ∈ (0,∞)

∣∣∣∣ ∥∥∥I{|g|2>R}g∥∥∥Ld(Λ)
6

ε

C1

}
,
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where C1 = C1 (d, |Λ|) > 0 is the constant from Theorem F.1 (i) for n = 0, q = 2d
d−2 ,

m = 1, p = 2. Since g ∈ Ld (Λ) + L∞ (Λ), we have C0 < ∞. By Hölder’s inequality with
q = 2 we get

ˆ
Λ
|g| |u| |∇v| dξ 6

(ˆ
Λ
|g|2 |u|2 dξ

) 1
2
(ˆ

Λ
|∇v|2 dξ

) 1
2

.

Again, Hölder’s inequality with q = d
2 , q

′ = d
d−2(ˆ

Λ
|g|2 |u|2 dξ

) 1
2

6

(ˆ
Λ
I{|g|2>C0ε} |g|

2 |u|2 dξ + C0ε ‖u‖2L2(Λ)

) 1
2

Hölder
6

((ˆ
Λ
I{|g|2>C0ε} |g|

2 d
2 dξ

) 2
d
(ˆ

Λ
|u|2

d
d−2 dξ

) d−2
d

+ C0ε ‖u‖2L2(Λ)

) 1
2

=

(∥∥∥I{|g|2>C0ε}g
∥∥∥2

Ld(Λ)
‖u‖2

L
2d
d−2 (Λ)

+ C0ε ‖u‖2L2(Λ)

) 1
2

6

(
ε2

C2
1

· C2
1

ˆ
Λ
|∇u|2 dξ + C0ε ‖u‖2L2(Λ)

) 1
2

by the definition of C0 and C1. Now, since
´

Λ |∇v|
2 dξ 6

´
Λ |∇v|

2 dξ + 1
εC0 ‖v‖2L2(Λ), we

have

ˆ
Λ
|g| |u| |∇v| dξ 6

(
ε2

ˆ
Λ
|∇u|2 dξ + C0ε ‖u‖2L2(Λ)

) 1
2
(ˆ

Λ
|∇v|2 dξ +

1

ε
C0 ‖v‖2L2(Λ)

) 1
2

= ε
1
2

(
ε

ˆ
Λ
|∇u|2 dξ + C0 ‖u‖2L2(Λ)

) 1
2
(

1

ε

) 1
2
(
ε

ˆ
Λ
|∇v|2 dξ + C0 ‖v‖2L2(Λ)

) 1
2

which implies the assertion for C = C0 (ε, d, |Λ|).

The following Lemma is also known as the log-convexity of Lp-norms.

F.7 Lemma (Interpolation of Lp-norms). Let (X,A, µ) be a measure space. For 0 < p <
∞ we denote Lp (X) := Lp (X,µ;R). Let 0 < p0 < p1 < ∞ and u ∈ Lp0 (X) ∩ Lp1 (X).
Then

u ∈ Lp (X) for all p0 6 p 6 p1.

Moreover, we have for all 0 6 λ 6 1

‖u‖Lpλ (X) 6 ‖u‖
1−λ
Lp0 (X) ‖u‖

λ
Lp1 (X) ,

where 1
pλ

:= 1−λ
p0

+ λ
p1
.
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Proof. Let 0 6 λ 6 1. We set

q :=
p0

(1− λ) pλ
=

(
1− λ
p0

+
λ

p1

)
p0

1− λ
= 1 +

λp0

(1− λ) p1
=

(1− λ) p1 + λp0

(1− λ) p1
.

Then for the dual of q we have

q′ =
(1− λ) p1 + λp0

λp0
= 1 +

(1− λ) p1

λp0
=
p1

λ

(
λ

p1
+

1− λ
p0

)
=

p1

λpλ
.

Now by Hölder’s inequality

‖u‖Lpλ (X) =

(ˆ
X
|u|(1−λ)pλ |u|λpλ dµ

) 1
pλ

6

(ˆ
X
|u|(1−λ)pλq dµ

) 1
q

1
pλ

(ˆ
X
|u|λpλq

′
dµ

) 1
q′

1
pλ

=

(ˆ
X
|u|p0 dµ

) (1−λ)pλ
p0

1
pλ

(ˆ
X
|u|p1 dµ

)λpλ
p1

1
pλ

= ‖u‖1−λLp0 (X) ‖u‖
λ
Lp1 (X) ,

and the second assertion follows. Since λ is arbitrary, the first assertion follows.
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