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Introduction

In this diploma thesis we are going to show existence and uniqueness of solutions to stochas-
tic partial differential equations on a Gelfand triple V- C H C V* driven by Poisson type
noise with locally monotone coefficients of the form

X (t) , X (8)) ds+ B (s, X (s)) dW (s)

= A(s
+/Zf(s,X (s—),2) p(dz,ds), (1)
X (0) = Xo,

on a finite time horizon, where W is a cylindrical Wiener process and [i is a compensated
Poisson random measure.

Stochastic partial differential equations with jump type noise, such as Lévy type pertuba-
tions or Poisson type noise, play an important role for modelling real world problems. In
physical research, risk modelling and option pricing in finance, genetics and even climate
based research these equations emerge to a greater extent, since a Lévy pertubation or the
additional Poisson jump term offer more suitable modelling abilities than stochastic partial
differential equations driven by a Wiener process solely, cf. [App04], [NOP09|, [HIP09],
[NR13] or [XFLZ13|.

Therefore, it should come to no surprise that in the last few years there has been a
high research interest in mathematics concerning existence and uniqueness of solutions
to stochastic partial differential equations (abbr.: SPDE) driven by discontinuous jump
terms, especially driven by Lévy type noise. For example one can have a look in [LR04],
[Kno05], [PZ07], [RZ07], [App09], [NOP09|, [MPR10], [Pr0] or [BLZ11] and the references
therein to get a rough overview. This research with respect to jump type noise extends
even to stochastic partial differential equations on separable Banach spaces, cf. [RZ06],
and has been recently carried out for multi-valued maps, see [Stel2| and [LS14]. Ear-
lier, SPDEs driven by general discontinuous martingales had been studied by Gyéngy and
Krylov already, see [GK80], [GK82] and [Gy2].

Typical examples to equations of type-(1) are stochastic Burgers equations and the stochas-
tic p-Laplace equations.

The result presented in Theorem 2.2.1 is based upon the paper of Brzezniak, Liu and
Zhu |BLZ11] and states, that under certain conditions, such as local monontonicity and
coercivity, equation (1) has a unique (strong) solution in the sense of Defintion 2.1.1. Due
to the Lévy-It6 decomposition, the class of SPDEs driven by Lévy type noise can be
reduced to the class of SPDEs, where the stochastic pertubation term is a sum of a Wiener
process and a compensated Poisson random measure as in (1), cf. Section D.1 in [Stel2]
or Section 9 in [NOP09.



Introduction

More precisely, a stochastic partial differential equation of the type
X (t)=A(s,X (s)) ds+o(s,X (s)) dL(s),

where L is a general Lévy process, can be written in the form of (1). However, contrary
to the result in [BLZ11], we do not involve big jumps in our equation, which would cause
the appearance of and additional summand in (1) driven by a general Poisson random
measure.

The variational framework was commenly used (see e.g. [PRO7]) to show existence and
uniqueness to SPDEs driven by a cylindrical Wiener process, i.e. f =0 in (1), under the
assumption that A and B are monotone operators and that A and B fulfill a coercivity
condition. In [LR10] and [LR14] this result was improved by assuming that the operators A
and B are only locally monotone. In [BLZ11] this approach led to existence and uniqueness
for (1) under the further assumption, that also f is locally monotone. However, there is no
need for f to fulfill a coercivity condition, too. A further, recently published generalization
is the use of a generalized coercivity condition on A and B, cf. [LR13], in case f = 0 to
handle the tamed 3D-Navier-Stokes equation.

Since this thesis is based upon [BLZ11]|, we do not cope with a generalized coercivity
condition here, but use some minor but important changes — which are inspired from
[LR14] — to improve the assumptions made in [BLZ11| and [LR10]. It is important to
make note of our division of uniqueness and existence of solutions to (1) in Theorem 2.2.1
depending on the given assumptions, because the claimed uniqueness (and even existence)
result in [BLZ11] does not follow directly in general from the assumptions made therein,
cf. Remark 2.2.2.

Hence this work can be understood as an extension to [PR07| and [LR10]| with respect to the
compensated Poisson random measure-term and covers all the results therein. Moreover,
one should not lose track of the fact that in case B = 0 this thesis provides a tool to handle
SPDEs of pure jump type (sometimes called pure Lévy jump type) as well.

The intention of this work is to prove existence and uniqueness of solutions to (1) under
corrected and weakened assumptions in a comprehensible way and in all details. For a
discussion on the assumptions, we refer to Remark 2.2.2. Furthermore this work will
provide some applications proved in all details, too.

Although this thesis is meant to be self-contained, the reader is required to have knowledge
of stochastic integration in Hilbert spaces as well as knowledge of (cylindrical) Wiener
processes. In this thesis we mainly stick to the notation of Section 2 and 3 in [PRO7].
Sobolev embeddings are used frequently in Chapter 3, but summarized in Appendix F.
Nevertheless, it is recommended to know about functional analysis and weak convergence.
Let us mention [Alt06] and [Brel0] as references in this area.

Let us briefly outline the structure of this thesis.

In Chapter 1 we will introduce Poisson point processes and Poisson random measures.
Briefly we will recall all necessary fundamentals of the stochastic integration with respect
to Poisson point processes.

Chapter 2 contains the main result of this thesis and its proof. After introducing the
variational framework, we define what is meant by a solution to (1) and postulate the



main assumptions (cf. conditions (A1)—(A4)). They lead to Theorem 2.2.1 and Remark
2.2.2 in which we discuss the differences between our assumptions and the familiar results
in [BLZ11] and others. Afterwards we will give a short outline of the proof and finally
prove existence of solutions to (1) and uniqueness.

In the last chapter of this thesis, Chapter 3, Theorem 2.2.1 is applied to semilinear and
quasi-linear stochastic equations driven by Poisson type noise. In the first case one can
think of a stochastic Burgers type equations. The second case will be the p-Laplace equa-
tion. Following the intention of this work, the verification of all assumptions made in
Chapter 2 will be done in all details.

In section A-F of the appendix we will present all auxiliary results needed in Chapters 2
and 3 for completeness, in particular those, that are missing or claimed, but not proved in
[BLZ11].

I would like to thank my supervisor Prof. Dr. Michael Rockner for leading me to the field of stochastic partial
differential equations and his constant support in the past years. Special thanks are given to Dr. Simon Michel for

his helpful comments. Finally, I am very grateful for the support of my family and my better and worse half, Jule.






1. Stochastic Integration with respect to
Poisson Processes

In this chapter we will introduce the Poisson random measure and the Poisson point
process. Afterwards we will establish the fundaments on stochastic integration with respect
to a Poisson point process. Our main references are [Kno05| and [IW81].

1.1. Poisson Random Measures and Poisson Point Processes

Let (2, F, P) be a complete probability space. Let (S,S) be a measurable space and let
My (S) denote the set of N = Ny U {+00}-valued measures on (S,S). We write B (Mg (59))
to denote the smallest o-field on My (S) such that all mappings jp: Mg (S) 2 p+— p(B) €
N for B € S are measurable, i.e.

B (Mg (5)) =0 (Mg (S) > p— pu(B)|BES).
1.1.1 Definition. A map p: Q x S — N is called N-valued random measure, if

(i) p(w,-) € Mg (S) for each w € Q and

(ii) u (-, B) is an N-valued random variable on (2, F, P) for all B € S.

For simplicity of notation we will write u (B) instead of p (-, B).

1.1.2 Definition. An N-valued random measure p is called Poisson random measure if
the following conditions hold.

(i) For all B € S with E[u(B)] < oo, u(B) : @ — N is a Poisson distributed random
variable with parameter E [ (B)], i.e.

for all n € N. If E[u (B)] = oo, then u(B) = oo P-a.s.

(ii) For any pairwise disjoint By, ..., B, € §,n € N, the random variables 1 (B1) , ..., 1 (By)
are independent.

Now let (Z, Z) be another measurable space.

1.1.3 Definition. A point function p on Z is a mapping p: D, C (0,00) — Z, where the
domain Dy, of p is countable.



Chapter 1. Stochastic Integration with respect to Poisson Processes

1.1.4 Remark. Each point function p on Z induces a measure p, (dt,dz) on ((0,00) x
Z,B((0,00))®Z). Let P (Dy) denote the power set of Dy and let p: Dy — (0,00) X Z, t+—
(t,p(t)). Let v be the counting measure on (Dy, P (Dy)) defined by v(A) = #A for all
A € P(Dy). Now let us define the measure

pp (Ax B) :=v (p~' (A x B))
for all A € B((0,00)) and B € Z. Then we have
pp(Ax B)=#{teDy|tc A, p(t) € B}.
Notation. For given t € (0,00) and B € Z we will set A =10,t] and write

Hyp (th) = Hp (]O,t] X B).

Let
Pz =A{p: Dy, C (0,00) = Z|D, is countable}

be the space of all point functions on Z and define
Bp, =0 (Pz23p—pup(t,B)|[t>0, Be Z).

1.1.5 Definition. (i) A random variable p: (Q,F) — (Pz, Bp,) is called point process
on Z and (Q, F, P).

(ii) Let 6; be the shift operator given by 6;: (0,00) — (0,00), s — s+t. A point process
p is called stationary if for every ¢t > 0 the process p and the shifted process 8;p have
the same probability laws.

(iii) A point process p is called o-finite if there exists a sequence (B), .y C 2 with
B, " Z asn — oo and
E [pp (t, Bp)] < 00

for all ¢t > 0 and n € N.

(iv) A Poisson point process is a point process p on Z if there exists a Poisson random
measure v on ((0,00) x Z,B((0,00)) ® Z) and a P-zero set N € F such that for all
we NCand all A€ B((0,00)), BE Z

p(w) (A X B) =v(w, A X B).

1.1.6 Proposition. Let p be a o-finite Poisson point process on Z and (2, F, P). Then
p is stationary if and only if there exists a o-finite measure m on (Z, Z) such that

E [pp (dt,dz)] = dt @ m (dz).

Here, dt denotes the Lebesgue-measure on ((0,00),B((0,00))). In this case the measure
m is uniquely determined and we call it the characteristic measure of uy.

Proof. See |Kno05, Proposition 2.10].
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1.2. Stochastic Integration with respect to a Poisson Point Process

1.1.7 Definition. Let F;, t > 0 be a filtration on (2, F, P) and p a point process on Z
and (Q, F, P).

(i) The process p is called (F;)-adapted, if for every t > 0 and B € Z, pu, (t,B) is
(Ft)-measurable.

(ii) The process p is called an (F;)-Poisson point process, if it is (F;)-adapted and o-finite,
such that
{np (Jt,t +h] x B)|h >0, B e Z}

is independent of F; for all ¢ > 0.
Further, we define the set
Ly, :={Be Z|E[y(t,B)] < oo forallt>0}.

1.1.8 Definition. Let F; be a right-continuous filtration on (2, F, P). Let p be a Poisson
point process on Z and (€, F, P). The process p is said to be of class (QL) or quasi-left-
continuous with respect Fy, if it is (F;)-adapted and o-finite and for all B € Z there exists
a process v (t, B) : Q@ — R, t > 0, such that the following conditions hold:

(1) If B €T'y,, the process v (t, B), t > 0, is a continuous (;)-adapted increasing process
with v (0, B) =0 P.-a.s.

(2) For all t > 0 and for P-a.e. w € Q, v (w) (¢,-) is a o-finite measure on (Z, Z).
(3) If BET,,, then
fip (t,B) == pp (t, B) —v (¢, B), t =0,
is an (F;)-martingale.

In this case we call v the compensator of ji, and fiy is called compensated Poisson random
measure of fip.

1.1.9 Proposition. Let F;, t > 0, be a right-continuous filtration on (2, F, P). Let m
be a o-finite measure on (Z,2) and let p be a stationary (F)-Poisson point process on Z
with characteristic measure m.

Then p is quasi-left-continuous with respect to Fi and with compensator

v(t,B)=t-m(B), t>0, BeZ.
1.2. Stochastic Integration with respect to a Poisson Point

Process

In this section we want to construct the stochastic integral with respect to compensated
Poisson random measures, where the random measure is induced by a stationary Poisson
point process.

11



Chapter 1. Stochastic Integration with respect to Poisson Processes

Let (2, F, P) be a complete probability space with normal filtration (F;), t > 0, and let
(Z, Z) be another measurable space with a o-finite measure m.

We fix a stationary (F:)-Poisson point process p on Z as defined in the previous section
with characteristic measure m. Since p is stationary and by Proposition 1.1.9, p is quasi-
left-continuous with respect to F; and the compensator v of the induced measure py, is
given by v = dt ® m. The compensated Poisson random measure is given by

fip = plp — v = 1 — dt @ m.

We will denote these measures simply by p and [, since p is fixed throughout the whole
section.
Further let (H, (-,)) be a separable Hilbert space, T € (0, 00) and set

I'={BeZ|m(B)<oo}.

Let MZ (H) be the space of all cadlag square integrable martingales in H with respect to
(F2)-

1.2.1 Definition. An H-valued process ® (t): Q@ x Z — H, t € [0,T], is an elementary
process, if there exists a partition 0 = typ < t; < - < tp = T, k € N and for m €
{0,k — 1} there exist pairwise disjoint BY",..., B, € I', ny, € N, and functions ®J" €
L?(Q, F;, ,P;H), 0 < i < ny, such that the following holds:

k—1 nm

= > Oyt

m=0 i=1
The linear space of all elementary processes is denoted by &.

The stochastic integral with respect to i can now be defined for an elementary process
®ecfandtel0,T] by

Int (@) (¢) = /]0 t] /Z B (s, 2) fi (dt, d2)

k—1 nm

= Y P (A (w1 AL B) = i (tm AL, B)) .

m=0 i=1

Then Int (®) is linear in ® € £ and P-a.s. well defined. We set
[ [1e6s.205 m@) as
10,¢] JZ

1.2.2 Proposition. For ® € & we have Int () € M2 (H), Int (®) (0) = 0 P-a.s. For all

t€[0,T]
/]Ot]/ZH@(s,z)qum(dz) ds] (1.2.1)

|1®ll7 == E

for ® € £.

E [|lint (@) ()% ] = E

12



1.2. Stochastic Integration with respect to a Poisson Point Process

holds. In other words, Int: (&, - [|3) — (./\/l% (H), |- HM2T> is an isometry with

it ()] 2. = @2
Proof. See [Kno05, Proposition 2.22]. O

Up to this point, ||-||7 is only a seminorm on €. Thus let us consider the space of equivalence
classes of elementary processes with respect to || - ||z and let us denote it again by &£ for

simplicity of notation. &£ is dense in the completion gl of & with respect to || - || and
hence there exists a unique isometric extension of Int to M7 and the isometry in (1.2.1)
also holds for each process in ?H'”T.

The following proposition will characterize ?HIHT. But first we need to define the predictable
o-algebra on [0,T] x Q x Z by

Pr(Z):=0(g9: [0,T]xQxZ—R|gis (F ® Z)-adapted and left-continuous)
=o({]s,t]x FsxB|0<s<t<T, Fs€ F,, Be Z}
U{{0} x Fy x B| Fy € Fy, B Z})

and set
./\/5 (T,Z;H):=¢®: [0,T)xQx Z — H|®is Pr(Z)/B(H)-measurable

1
2

and H<I>||T:IE[/ /H@(s,z)”?{m(dz) ds| < oo
101 /2

1.2.3 Proposition. In the situation above we have
=l-l
&N =NZ(T,Z; H)

and

NI(T,Z;H) = L*([0,T] x Qx Z, Pr(Z), dt®@ P@m; H).
Proof. See |Kno05, Proposition 2.24]. O

1.2.1. Properties of the Poisson integral

We will now collect some important properties of the stochastic integral with respect to a
compensated Poisson random measure.

1.2.4 Proposition. Let ® € N (T, Z; H) and let T be an (F)-stopping time with P (1 < T) =
L. Then Tjo 1@ € N (T, Z; H) and

/ /]I]Oﬂ (s) @ (s,2) ii(ds,dz) :/ /Cb(s,z) i (ds,dz) P-a.s.
10,4 J 2 10,tn7] J 7
for all t € [0,T].

13



Chapter 1. Stochastic Integration with respect to Poisson Processes

Proof. See [Kno05, Proposition 3.5|. O

1.2.5 Proposition. Let ® € N; (T, Z; H) and set
X (t) ::/ /@(s,z),u(ds,dz), tel0,T].
10,4 J 2

Then X is cddlig and X (t) = X (t—) P-a.s. for allt € [0,T].
Proof. See [Kno05, Proposition 3.6]. O

1.2.6 Proposition. Let ® € Nﬁ% (T,Z;H), H be another Hilbert space and let L €
L <H; H). Then L (®) € N2 (T,Z;ﬁ) and

L (/M/Zq><s,z) u(ds,dz)) —/M/ZL(cI) (5,2)) fi(ds,dz) P-a.s.

for all t €10, 7.
Proof. See |Kno05, Proposition 3.7]. O

1.2.7 Proposition. Let ® € NZ (T, Z; H). Then for all t € [0,T]

. [ [ oo nasa]<2|[ [ a6 ma dsl |

Proof. See |Stel2, Proposition 2.21]. O

=E

Let [X], denote the square bracket of an H-valued process X (t).

1.2.8 Proposition. Let ® € ./\/3 (T,Z;H) and

X (t):= /}O,t} /Z<I>(s,z) f(ds,dz), t>=0.

Then

X~ [ [ 1962 (s a).
10,4 J 2
Proof. [Stel2, Corollary 2.23| O

14



2. Main Theorem

In this chapter we will formulate and prove the main theorem of this work. Our main
reference is [BLZ11].

2.1. Setting and Assumptions

Let (H,(-,-);) be a separable real Hilbert space identified with its dual space H* by the
Riesz isomorphism. Let V' be a real reflexive Banach space with dual space V*, such that
V is continuously embedded into H, i.e. there exists C' > 0 with

lvllg < Cllv]|y forallv €V,

and such that V is dense in H. We call (V, H, V*) a Gelfand triple. It follows that H* C V*
continuously and densly (cf. [Zei90, Proposition 23.13]) and also

VCH=H"CV*
continuously and densly. If . (:,-);, denotes the duality between V" and V*, then we have
velu,v), = (w,v)y forallue H,veV.

Note that V* is separable since H C V* continuously and densly and hence this is true for
V.
Let (2, F, P) be a probability space with normal filtration (F3), t > 0. Let (Z, Z,m) be
a measurable space with a o-finite measure m. As in Section 1.2 we fix a stationary (F;)-
Poisson point process p on Z and (2, F, P). The compensated Poisson random measure is
given by

a(t,B)=u(t,B)—tm(B), t>0, BeZ,

where fi = fip and p1 = py. Let U be another separable Hilbert space and let (W;),, be a
U-valued cylindrical Wiener process on the probability space (Q, F;, P). Let 0 < T < oo
be fixed.

We consider the stochastic partial differential equation of the following type

dX (t) = X () dt+ B (t, X (t)) dW (¢)

/f (1, X (t—), 2) fi (dt, d2), (2.1.1)

X (0) =Xo,

15



Chapter 2. Main Theorem

where X is an Fp-measurable random variable. We consider the operators
A: [0, T xQxV -V,
B: [0,T] xQxV — Ly (U, H),
f:[0,T]xQxVxZ—H,

where (La (U; H), ||-||,) denotes the space of Hilbert-Schmidt operators from U to H.
For simplicity we write A (¢, v) for the mapping w — A (t,w,v) and analogously for B and
f. The operators A and B are both assumed to be progressively measurable, i.e. for all
t € [0,T] these maps restricted to [0,t] x Q@ x V are B([0,t]) ® F; ® B(V)-measurable
where B denotes the Borel-o-algebra. f is assumed to be a P ® B (V) ® Z-measurable
function, where P is the predictable o-algebra which is generated by all left-continuous
and F-adapted real-valued processes on [0, 7] x 2.

We assume that there exist constants

a>1, =0,

>0, K>O0,
a non-negative, F-adapted process (Fi);c(o 7y such that F € L' ([0,T] x ,dt ® P;R) and
a measurable, hemicontinuous function g: V' — [0,00), which is locally bounded in V.

Furthermore we assume that these constants and functions fulfill the following conditions
for all v, v1, vo € V,we Qand all t € [0,T]:

(A1) Hemicontinuity. The map
s v (A(t, 01 + sv2),0)y,
is continuous in R.

(A2) Local monotonicity.
ve(A(t,v1) — A(t,v2),v1 —va)y, + || B (t,v1) — B (tva)H%g
/ 1f (01, 2) = f (02, 2) [ m(dz) < (B + 0 (v2)) [lor — 2|7
(A3) Coercivity.
2y (A(t,0),v)y +IIB ()7, + 0 vl < B+ Kol

(A4) Growth.

1A )57 < (B + Kol9) (1+ ol ) -

2.1.1 Definition (Solution). A solution to (2.1.1) is an Fi-adapted, H-valued, cadlag
process (Xt)te[O,T}’ if for its dt ® P-equivalent class X the following conditions hold:

16



2.2. Formulation of the Theorem

(i) P-a.s. we have X € LY([0,T] x Q,dt ® P; V)N L?([0,T] x Q,dt ® P; H).

(ii) The following equality holds P-a.s. for all ¢ € [0, T7:

t

X(t):Xo—F/O A (s, X (s)) ds—i—/ B (s, X (s)) dW (s)

0

+/Ot/Zf(s,X(s— 2) fi(ds.dz).

The integrability of all occuring integrals is required.

2.1.2 Remark. Although A is an V*-valued process by definition, we will see in Proposition
2.3.10 that the V*-valued Bochner integral with respect to dt will become H -valued.

Our main aim in this chapter will be to establish existence and uniqueness of strong
solutions to (2.1.1) in the sense of Definition 2.1.1.

2.2. Formulation of the Theorem

Suppose all conditions and assumptions from Section 2.1 hold. Let Cppg > 0 be the
generic constant from the Burkholder-Davis-Gundy inequality D.5 (i) in case p = 1 and
define

r:=r(0,8,Cspc)
ﬁ+2 [

-1
(B+2) (5 + S (B+2)Chpe +2°2 4 1> -3 2ﬁ+1] . (2.2.1)

Then T' > 0 because 6,Cspg > 0, B> 0 and (8 +2) 2512 = 2(5 +2) 20+ > 4. 20+1 >
326+ We can now formulate the main theorem of this work.

2.2.1 Theorem. Suppose that conditions (A ]) (A4) are satisfied and that F' € L% ([0 T]x
Q,dtx P). Suppose there exist constants 0 < 9% [(B+2)(B+1)+2°F1 (28 +1)] !
and C > 0 such that

1B (¢, 0)IIZ, + /Z 1F (8,0, 2) [l m (d2) < O (1+ Fy + |loll) + o3, (B1)

B+2
2 == 2
/ If (8,0, 2) 52 m (dz) < C (1 +F 7 +ollh ) +7llollF ol (B2)
and let o be such that

o(0) < C(1+ ol (1+ ol (B3)

for every 0 <t < T, w € Qandv € V. Then equation (2.1.1) has a solution (Xt),epo
for every initial value Xo € LP (Q, Fo, P; H), where B >  + 2. Furthermore,

17



Chapter 2. Main Theorem

(i) there exists a constant C = C (p,~,0,C, K, T) > 0 such that

T g2
(1 +E|IXol5?] +E [/ F,? dtD .
0

(i) if 0 < v < T, then there exists a constant C = C (p,~,0,C,Cppa, K,T) > 0 such
that

sup E {HX
te[0,T)

E | sup ||IX ()|

te[0,7

. B2
<c<1+E[||Xo||Z“]+EU F? dt])
0

and the solution X = (X¢),e101y is unique.

Let us do a short discussion on this theorem and its assumptions in contrast to the familiar
results in [BLZ11, LR10].

2.2.2 Remark.

(i) Although stated otherwise in [BLZ11, Theorem 1.2/, the claimed result for uniqueness
of the solution X = (Xt)te[o,T} in the case when 2.2.1 (ii) does not hold, i.e. v > T,
cannot be achieved. We will see in the proof of uniqueness in Section 2.4 that we
need Corollary 2.5.13 (iii), which only holds for v < T.

(ii) Contrary to the statement in [BLZ11, Theorem 1.2], we do not state in 2.2.1 (i) and
(i) that

T
E [ | Ix @I 1 @1 o

is bounded. Although we will see that this term is bounded in case of the finite
dimensional equation, typical convergence arguments are insufficient to show that
the term above is also bounded in the infinite dimensional case.

(1ii) The given bound on vy in Theorem 2.2.1 is of a technical origin, as one will see in
the proof of Lemma 2.3.5 (ii). One can use

0
y<g B2
as a better looking, but smaller bound in Theorem 2.2.1, because
B+2)(B+1)+2°71(28+1) < (B+2)2+2°TL (28 +4) = (B+2)* + (B +2) 2°+2

implies that

2
9&

v < = o [(6+2)+25+2} :

pPt2

[(5 +2% 4+ (B+2) 25”} -

: [(5 +2)(B+1)+2°71 (28 + 1)]

and so the Theorem holds.
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2.2. Formulation of the Theorem

(iv) We only know that Cppga is generic. Since no information about its calculation can
be found in [Kal97], we cannot calculate T' explicity here. But from [LS89] we know
that Cppg < 3, since we need it for p = 1.

(v) Condition (B2) is weaker than condition (1.83) in [BLZ11, Theorem 1.2], because we
allow [, || f (t,v,z2) ||%+2m(dz) also to be bounded by ||UH€I lv]|y,. As a consequence
we cannot choose v < oo to be arbitrary if B = 0, but we can still choose v < 0 if
B =0 (cf Remark 2.3.6 (i1)) and our bound on 7y becomes smaller.

Anyway, the claimed bound of v < % in [BLZ11, Theorem 1.2] is not sufficient
for B € (O,%) to show existence with the methods used therein. The reason lies
in the missing analogue of our Lemma 2.3.5 (i) in [BLZ11], which has not been
worked out there. We can see in the proof that we always need v < 6 to apply
Gronwall’s inequality, which is e.g. obuviously not true for f = i (then we could

choose 6 < v < 26).

Another reason for weakening condition (B2) here and therefore losing a higher bound
on vy 1is the fact, that all the examples in [BLZ11] do not even involve v, i.e. v =10
there. In Chapter 3, we are able to use this bound to claim more general conditions.

(vi) We use a weaker local monotonicity condition (A2) here. For condition (H2) in
[BLZ11] or [LR10] the bound is given by

(K + 0 (v2)) [lv1 — w2l

in (A2). Here, we allow (Fy)yeqo 7y to be part of the bound instead. This generalization
is inspired from [LR14[, which is not published yet.

(vit) In a special case, namely for 5 =0, a < [ — %]_1 and 50 < 16K, we can deduce

(B1) from (A3) and (A4). Indeed, both (A3) and (A4) imply

a—1

1B (¢, 013, < =00l + B+ Kljol3 +2 (B + Klolg) (1+ elF)) ©
By Young’s inequality we see that

el 1 a-1
(B Kol (14 1005)) = < =+ 2 (B (14 o) + K ol (1 4+ 0ol ) )

Therefore

) 2 2(a—1) 5
< = i S
1B (¢, < =+ F 1+ 22 (14 oll})

« 2 (Oé — 1)
ol [ 2O (1 i) - o] + K ol
Hence, since =0,

2 4(a—1) A(a—1)
3ol < 2+ 5 [+ LD e (K22 o]l
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Chapter 2. Main Theorem

So, if 0+~ > 4K°‘Tf1 and if C' > max{%;K; 1 +4a771}, then (A3) and (A4) give
us a stronger estimate than (B1):

2 2
1B (t.0)l17, < C (1+ F+[lollz) + ol -

Furthermore, since B =0, we can drop (B1) completely then, since (B2) covers the
estimate for f. It remains to show that there exists such a vy with 4KO‘T_1 —0<y< g.
By some calculation, this is true for 50 < 16 K and

-1
a < [1—50] .

The proof of Theorem 2.2.1 is split into an existence and a uniqueness part. The existence
part is based on the so called Galerkin approximation. First we will consider equation
(2.1.1) in a finite dimensional space with dimension n € N. Then a solution to this
finite dimensional equation can be found, but instead of proving this fact, we refer to the
literature. However, we will see that this solution fulfills some apriori estimates under
our assumptions and this will lead to Lemma 2.3.7 below. There we will see that each
integrand of (2.1.1) in the finite dimensional case convergences weakly as n — oo.

These limiting processes will be used to construct a solution to (2.1.1) in the general
case. Section 2.3.2 deals with an Itd formula for this process and finally we will see that
the integrands of our constructed process are almost everywhere equal to those given in
(2.1.1). Hence a solution will be constructed, since all regularity estimates and integrability
conditions will follow from conditions (A1)-(A4) and (B1)—-(B3).

Section 2.4 deals with the matter of uniqueness. Contrary to the existence part, this
one is quite easier. However, as already mentioned in the introduction, we will see that
the stronger condition on 7 in Theorem 2.2.1 (ii) is mandatory to obtain uniqueness of a
solution.

Let us start with the proof of Theorem 2.2.1. For the rest of this chapter we set p := 8+ 2.

Notation. For any given ¢ > 1 we denote by ¢’ its dual such that %—}—% =1, e ¢ =-L.

q—1

We assume that for the initial value X from Theorem 2.2.1 we have Xo € LA72(Q, Fy, P; H)
without loss of generality. This follows from the generalized Holder’s inequality.

2.3. Proof of the Main Theorem — Existence

The proof of existence is based on the Galerkin approximation and therefore, we will first
consider a finite dimensional version of equation (2.1.1).

Let n € N be arbitrary. We will now assume that {ej, es,...} C V is an orthonormal basis
of H, which exists since V' C H is dense and continuous and such that Span (ej, ea,...) is
dense in V. Define the finite dimensional space

H,, :=Span (e, eg,...,e,)
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2.3. Proof of the Main Theorem — Existence

and the projection
PV = Hyy s Pa(v) =Y pu(v,ei)y e

Foru eV, v € Hy, and t € [0,T] we obtain
ve(PhA (tu),v)y, = (PhA(tu),v) g = e (A(tu),v), .

Now let {g1,92, ...} be an orthonormal basis of U and P, the orthogonal projection onto
Span (g1, 92,...,9n) in U. Set

n

Wi =" (W gi)y i = BaWe.
=1

2.3.1. Finite dimensional equation

The finite dimensional version of equation (2.1.1) in H,, can now be written as
dY (t) =P, A (t,Y (t)) dt + P,B (¢, Y (t)) dW,"™
+ [ P Y (42),2) i), (23.1)
Y (0) =P, Xo,
where t € [0,T] and Xo € LA+2 (Q, F;, P; H) is the same initial value as in Theorem 2.2.1.

2.3.1 Proposition. Suppose conditions (A1)-(A4), (B1)-(B3) hold. Then equation (2.5.1)
has a strong solution, i.e. there exists an (F;)-adapted, Hy-valued, cadlag process <Xt(n)> 0]
te

such that we have

x™ =p, Xy + / t P,A (t,Xs(”)> ds + / t P,B (s,X§">> awm
0 0

(2.3.2)
t
+/ /Pnf (s,Xs(’i),z) fi (ds, dz) .
0Jz
P-a.s. for allt € [0,T].
Proof. See [ABW10, Theorem 3.1]. O

2.3.2 Remark. The result in Proposition 2.3.1 can also be retrieved from [GKS80, Theorem

1].

The next Lemma is an important auxiliary result and also known as the [t6 formula.
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Chapter 2. Main Theorem

2.3.3 Lemma (It6’s formula). Let 2 < g < oo and, for fized n € N, let (Xi)yeo 1) the
stochastic process given in (2.3.2). Then

2
’ds

t
Ity = Xl +a(a = 2) [ IX0E | (PuB (s, X0 )+ X [
0
q [* —2 2
+2 [ (204600, %0 ) as
2

t
T ( / X2 (X P (5. X W+ [ [ 1 <Xs,Pnf<s,xs,z>>Hn<ds,dz>>

s) ~n

(1 P G5 X 21— DXy = X X B (5, Ko, ) (s, 02

P-a.s. for allt € [0,T].
Proof. Apply [IW81, Theorem 5.1] to the function z — ||z||%, restricted to H,. O

2.3.4 Remark. [t6’s formula — or Ité’s lemma — for so called Ito-Lévy processes in finite
dimensions is a well known result in the literature. It can also be found in [Mé82, Theo-
rem 27.1] for general semimartingales. Without claiming to give a full list, let us further

mention [App09, Theorem 4.4.7], [NOP09, Theorem 9.5] and [ABW10, Equation (2.16)].

Now let us do some a priori estimates on (Xt(n)) 0] before we begin to construct a
te[0,T

solution to (2.1.1). Recall that we set p := 5+ 2.

2.3.5 Lemma. Suppose conditions (A1)-(A4}) and (B1)-(B3) hold and that F € L2 ([0, T]x

Q,dt x P). Let (Xt(n)) o1’ n €N, be a solution to (2.3.1) given by Propositon 2.3.1.
telo,
(i) There exists a constant C; = Cy (p,fy,H,C, K, T, | Xoll o, » HF||L§(QX OT])> >0
such that
sup [HX } +E [/ HX(" dt} < (2.3.3)
t€[0,7)
for all n € N.
(i) There exists a constant Cy = Co (p,~,0,C, K, T) > 0 such that
T 2
swp B [[xO e | [ [x]) x] a
t€[0,7) 0 (2.3.4)

< Gy <E [ Xoll] +E [/OTF; dt])

for all n € N.
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2.3. Proof of the Main Theorem — Existence

(iii) If 0 < v < I, then there exists a constant C3 = C5(p,~,0,C,Cppa, K,T) > 0 such

that
T —2 «
E| sw x| +E [/ [ | dt}
t€[0,T) H 0 H v
(2.3.5)
T b
<ai(Elxly) +2| [ ral)
0
for alln € N.
2.3.6 Remark.

(i) In the proof of 2.3.5 (ii) and (i11) (and also Lemma 2.5.7 (i1) to (iv)) we heavily use
Young’s inequality with q = ]%. At first sight this is not possible in case that p = 2,
i.e. B =0. But we use it always in the same situation, namely

g2 < P2y 20t
p p

for £,C € R, and this inequality holds true even if p = 2.

(i1)) One may also note that 2.3.5 (i) and (ii) are identical if p = 2. Bul we can see
in steps (i).6 and (i1).7 of the proof that 2.5.5 (i) allows us to use a higher bound,
namely v < 6 instead of v < %6 as in the proof of (ii). This is because in the proof
of (i) we use the second part from Lemma C.1 and not the first part.

Proof. First we need to introduce a stopping time TI(%n) for given n € N and R > 0, defined

by

ri) = inf {t > o || X"

H>R}/\T.

By Theorem D.4 we know that T](_zn) is a stopping time. Furthermore we have limp_, TI(DL”) =

T P-a.s. Since Xt(") takes values in the finite dimensional space H,, C V and because
V' C H continuously, we have

th(”) < OR, for all t € [O,Tg‘)} ,neN.  (2.3.6)

<R, |x

H 14

Notation. To avoid notational complexity we set t :=t (t,n, R) :=t A T}(%n) fort € [0,T].

Step (i).1. Let us apply Itd’s formula 2.3.3 to the process Xt(") and for ¢ = 2 in there.
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Chapter 2. Main Theorem

Then P-a.s. for all t € [0,7] we have

o) (2 Al X2 e fan (5. x0) 7
o /(. pp (sx00) o),

w2 [ ] (X0 R (5. X.2)) las.az)
[ (ngzupnf (5.x0.2)| =[xt
_2/ / X Paf (5,X00,2) ) (s, )

!

<,

=[x

2
) ds
Lo

) p(ds,dz)

i + H1 (t) + 2H2 (t) + 2H3 (t) + H4 (t) — 2H5 (t) .
(2.3.7)

Step (i).2. Applying (A3) to Hy () yields to
H (i) =/£ <2V*<A< XM, X<”>
A’% 4 o
/Fds+K/ HX ds—e/ HXS(”)Vds
0

Step (i).3. We come to Hj (f). Let us note that we have, for all ¢t € [0,7] and v € V,

(s X(")) B,

2
) ds
Lo

(B1) .
1B (o), 1B, + [ 1 (o2l m@s) < 0 (1+ Rt Jolly) + 1o
(2.3.8)

The stochastic integral fo < ) , P.B ( én)) dWs(n)>H is well-defined as a contiuous,
(n)

real-valued, local martingale, since as a cadlag, Fi-adapted process X,

E /t( gn))’2 ds] “E /£<C<1+Ft+HX§n) ’
0 L 0 H

< 00,

is predictable and

) e

)t

2 «
because from (2.3.6) we see that HXSI) g < and HXs(n) < oo and we have F €
L' ([0,T] x ,dt ® P;R). Hence we deduce E [Hg (f)] =0.

Step (i).4. Let us show that E [Hj ()] = 0. Let @ (s,z) := < x™ p nf (3 XS(_), >>H,

s—

then the process s — @ (s, -) is predictable, since f is predictable. From Proposition 1.2.2

24



2.3. Proof of the Main Theorem — Existence

and 1.2.3 we deduce that Hs (f) is a martingale. Indeed, for all t € [0,7] and v € V, we
have by the Cauchy-Schwarz inequality and condition (B1)

E //‘ X")Pf sXsU_l, >> ‘Qm(dz)ds]
<Eﬁugwgé\ gmgmm@@wl

e[ (o (e el o bl o <

because by (2.3.6) the V- and H-norms of Xs(r_L) are bounded and Fy € L' ([0,T] x Q,dt ® P;R).
Step (i).5. As the last step of preparation we want to estimate E [H4 (f) — 2H5 (f)]
Proposition 1.2.7 allows us to change the integrator from u (ds,dz) to m (dz)ds and then

we apply Lemma C.1:

[0 (0) 2015 ()] <[ [ 3) — 25 ()| <8111 1) — 2085 )]
2| [ |1 s (s ) - e

H
-2 <X8(71),Pnf (s,XS("),z)>H ‘ M(ds,dz)]

1.2.7

| s (s, 2) |, = 2]

H

_9 <X§Tj), Pof (s, X, z) >H ‘ m (dz) ds]

t
E /0 /ZHf <3,X§ﬁ),z>H2 m (dz) ds] .

Therefore, by (B1), we know that, for all ¢ € [0,77,
E [Hy () — 2H5 (1) //Hf sXs_, >H (dz)ds]

/ F,ds / HX /j”X@ zds] .

Step (i).6. The results (i).2 to (i).5 combined and used in the stopped version of (2.3.7)

ci1

ds

+CE

(B1)
<CT+CE +~E

25



Chapter 2. Main Theorem

in expectation delivers, for all ¢ € [0,T],

E [thfm Z] _E [ngm Z} +E [ ()] + 2 [#: ()] +2E [#s (D] + B [Hs () - 285 (7))
=0 =0
<E[||X0||§{]—I—(1+C)E[/OTFsds} +(C+K)IE[/O£HXS(”) st]
+CT+(y—0)E /jHX§”>Hi ds] .
(2.3.9)

Here we used that, since Xén) is Hy-valued, we have HXén) " < || Xo||;; and that, because
F' is non-negative and hence the integral with respect to ds is increasing in time, we get
E [fot F ds} <E UOT F; ds] If p > 2 then we observe by Hélder’s inequality

v =E [ Xoll]

hSAIN

2
E|I1Xol%] <E [IXoll%)7 -E [ <o

and

2
P

T p—2 T 2
(1+C)E{/ Fsds}g(l—l—C)TPIE[/ Fﬁds] < 00.
0 0

p—2

2
2 P -
So we set © :=E [| Xoll}4]? + 1+ C)T 7 E UOT F¢ ds} " + CT. We also have © < oc.

In the case p = 2 we see immediately that © = E {HXOH?{] +2E [fOT F, ds] +CT < o0

_1 P22
by assumption. Since v < 65 [p(p — 1)+ 2P~ (2p — 3)] P 6L < 0 by assumption, we

have 6 —~ > 0 and we bring the last summand in (2.3.9) to the left hand side and get by
Fubini’s theorem

go(f)—l—(@—'y)d)(f)<@+/Ot(C+K)go(s) ds

2
with ¢ (t) = E {HXt(n) H}, P(t)=E [HXS(R) z} Furthermore we have C' 4+ K > 0 and

1 > 0. Therefore we can apply Gronwall’s lemma B.5 on
i
)+ 0= (@) <0+ [ (C+K) (o) +O-1) () ds
and we get
o)+ 0 -y () < Oe(CHE)E £ @e(C+E)T

Then ¢ (f) < ©el©TT and hence SUP [0, ¥ (s) < O CHIT,

0(0) < g (e () + 0¥ (B) < o
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2.3. Proof of the Main Theorem — Existence

also holds true. Resubstitution gives us

sup E {HX
se[0,f]

el

, (2.3.10)

/)

1 C+K)T 2 p=2 T e
<<1+M>e(+) E [[|Xoll%]? + 27 EU Fﬁds] rorl| =
0

forall £ € [0, 7] and n € N and with C; = C, (p,’y, 0.C, K, T, | Xoll o ||F||Lg(QX[O’T])> <

00. The right hand side is independent of ¢, R, n and the stopping time T;zn).
Step (i).7. Now, we apply the monotone convergence theorem. (2.3.10) holds for T' €
[0,T] and we have 7'( ") T as R — oo P-a.s. Then we have

s || x4 [ x]]
s€[0,7
= lim sup HX(" +E hm x® 2
R—o0 (n) T/\ g v
SG[O,T/\TR ]
= lim sup HX(” +E|[x™ 2
R—o0 (n) TAT v
s€ [O,TATR ]
(2.3.10)
< G

for all n € N.
We come to the proof of 2.3.5 (ii).

Step (ii).1. We apply It6’s formula 2.3.3 to the process Xt(") with ¢ = p. Then P-a.s. for
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Chapter 2. Main Theorem

all t € [0,7] we have

| HX \ -2 [ [x

< SX§”>), ST_L)>V+HPnB<s,XS(”)>]5n

—i—p/‘ " 2 ", P (5, X)) aw ()

+p/0/z Xs(’j) . <X87,Pnf(s,XS(f),z)>Hﬁ(ds,dz)
! (n)

+/0/Z (||x& + Py (s 5, )H ‘

_p/ot/z Xgri) : <X§_ ,Pof (S,XS”),2)>H w(ds,dz)

ds

2
> ds
Lo

@) B) x|

H

X(”

H

),u (ds,dz)

P
=[x + o= 2B @) + SR @)+ pEs (1) + pE (1) + I (1)~ P (1)
(2.3.11)
Step (ii).2. We use (2.3.8) for I (f).
; "7 5 (m)||?
n (i) = /0 X ’(PB( (") n)*Xs_ Hds
i
(n)||? ‘
< x" P.B
/| (B8 (s x07) 2)|
i
(2;8) / Xéﬁ) p—2 |:C< Xén) 2 > (n) :| ds
0 H H 1%
t _9 t t _9 a
_ c/ x| Fsds+C’/ |x&| ds—i—7/ |x@I x| as
0 H 0 H 0 H 1%
i —2
+C / X as
0 H
The first summand in the last line can be splitted by Young’s inequality with ¢ = %5 into
p 2 fo ‘ X(n ! ds—|—2C fo F2 ds and the last summand into QTC —i—p 2 fo ‘ X(n) o ds.

Then we obtain

p—2

h@<TK’@H\
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2.3. Proof of the Main Theorem — Existence

Step (ii).3. We apply (A3) to I (£).

i
; m||P~2 n n)
L(f) = /0 x| <2V*<A (s,xg >),X§, >V

(43) (n)||P~2 (n
< / x FS+KHXS_ ds
0 H
i —92 i i _9 a
_ / x| Fsds+K/ |x[° ds—H/ x| x|
0 H 0 H 0 H Vv

As in the step before we split the first summand of the last line by Young’s inequality and

have the following result
) t . a _9 t . 9 i o,
L (f) < —9/ Xt ds + <K+p>/ x| ds+/ F? ds.
0 v p 0 H P Jo

Step (ii).4. Letusshowthat@(s 2) —HX Hp 2<X(§7,P f(s Xsf), >> E./\/_2 (t,Z;R),

(S,XS(")> P,

2
> ds
Lo

GHX

ds.

p—2 n
i R

then Iy ( ) fo [, ® Z i (ds,dz) is a real-valued martingale by Proposition 1.2.2 and
1.2.3 and we get E [I4( )] =E [fo [, @ i (ds dz)] = 0. Since f is predictable, the

process s — @ (s,-) is predictable. It remains to show that ||®||; < co. By condition (B1)
we get for all ¢t € [0,7] and v € V

9 (B1) 9 N
/lef(t,v,z)HHm(dz) < C<1+Ft+HvHH)+'vaHV (2.3.12)

and the Cauchy-Schwarz inequality delivers

) [ i (n)[[P~2 ) 2
iz = w | [ (680 R (352, [ dsl
[ [ e s (2 ) m o]
2(p—1)

Xs(ﬁ), )H m (dz) ds]

\if”((f(HﬂHX 1) lxely)

since HXSPHV and “Xgﬁ)“H are bounded by (2.3.6) and F € L% ([0,T] x ©,dt x P).

Step (ii).5. Since, as a cadlag, Fi-adapted process, X(:L)

. -2
integral f(f HX 5(7_1) ! <X gﬁ) , P.B (S,Xs(") ) dWs(n)> is well-defined as a continuous, real-

- [ e

(2.3<12)IE / HXSE)
/o

is predictable, the stochastic
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valued, local martingale if ® (s) :=P,B (s X )E Ny (0 t)

o= E / [ (s x| ds]

g [ (e (om0 ) oo

< 0

el

as in Step (ii).4. Hence we have E [Ig (t)] =o.

Step (ii).6. Now let us come to I ( ) and Ig ( ) First, we want to estimate £ HI5 (f) — plg (f) H
by Lemma C.1. By Proposition 1.2.7 we can replace p (ds,dz) by m (dz) ds in the integral

and then there exists a constant Cy = Cy (p) such that

B {11 () — ol ( [ X0 1 By (5,02 - [
o (g (0.2)), )|
27y [ L e s e (s x 22 - <
R (0 pag (5,00, 2)) L dsl
e | [l (x|

Continuing in the last row of the equation above and using (B2) we now obtain

E |15 () = pls (7)]]

<ore| [ (|Ke] v o (e mE 4 [y o [ o)) dS]
i ) P,
<Ci(C+1)E /HXS(”) Cds|+C-CiE /ngs
0 0
i
+ACLE /0 HXSZ HX(" ds| +C - C4T.

Step (ii).7. We apply the expectation to the stopped version of (2.3.11) and use our
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2.3. Proof of the Main Theorem — Existence

results from the Steps (ii).2 to (ii).6 on it.

B[

"1 =E[1Xolly]) + 20~ 2B (1 ()] + L E [B (@) +pE 1 ()] +9E [1 (3]

g

+(C-C4+2(p—2)C§>T,

+ E 15 () —pls (1)]

vl

<[B{15(2) 1o (9] [<E[|15(2) 1o )]

(10l + (0o —2) + 07— Lo) [/ I e

t t
[ o] s [
0 H 0

Cs = <p(p—2) <0+2(p;2)) +§<K+T) +c4(0+1)) and

Cs ::2(p—2)C'§+C-C'4+1.

+ C5E ds| + CgE

where

(n)

Here we used that since X~ is Hjp-valued we have HXon)

< || Xol|. Bringing the

8]
t
/FS2 ds

0

second summand to the left side we get

sl (o-ww-oscon)e[[ e,

/ e,

+(c-Cit2(p-2)Ch)T

p—2
X2,

< E[|Xo|l%] + C5E " ds

—|—C6E

p . . .. L (n)||P
where (p (p — 2) + Cy) v < §60 by assumption on y. For simplicity we set ¢ (t) := E [ X, H] ,

B [f(f HX : ds} and C7 = Cr (p,7,0) = 50— (p(p = 2) + Ca) v > 0.

We want to apply Gronwall S 1nequality, therefore by Fubini’s theorem the inequality above
can be written as

p—2

|

t
¢ (t) +Crp (t) <O +/0 Cs¢ (s) ds,

where © i= E [|| Xol}] + G5 E [ F? ds| + (€ Ci+2(p—2) CF) T. Note that C5 > 0

because K > 0. Since 9 is non-negative, we focus on

80(5)+C7¢(5)<®+/0t0590( @+/05 $)+Cr () d

31



Chapter 2. Main Theorem

and Gronwall’s inequality B.5 gives us
% (f) + C7yp (f) < @eC5£ < S
Non-negativity and C7 > 0 gives us ¢ (f) <y (£)+C7¢ (f) < 0e9T | therefore SUD, [0, ¥ (r)

©eT and

I P 1
vt < & (e () +Cre () < @9605T~

Altogether we have (with resubstituting ©) for all t € [0,7] and n € N

sup ¢ (r) + v (f)

re [O,f]

1 T »p
< (1 + C7> eCsT <IE [ Xoll%] + C6 E UO F? ds} + (0-04 +2(p— 2)0%) T)

<(1+Cl> (1+ Cg) (1+(c-04+2(p_2)c%)T)e05T (E[||Xo|%]+E[/OTF5d}+1>,

7

where the constant
. o 1 _ L CsT
Cy:=Cs(p,7,0,C,K,T):= 14+ — C (1+Ce)(14+(C-Cy+2(p—2)C2 )T )e
7

is independent of R, t, n and the stopping time T}({L).

Step (ii).8. In this last step we apply the monotone convergence theorem. Since (2.3.13)
holds for T' € [0, 7] and Tgl) — T as R — oo P-a.s. we get

T p—2 [}
sup E H‘X } +E [/ HXS(") HXS(n) ds}
r€[0,T] 0 H 1%
T/\7'<”n> -2

— lim  sup EH‘XT(") p} +E| lim / " HX§”> i HXSW “ ds

R—o0 (n) H R—o0 0 \4

TG[O,T/\TR ]
T/\T(n) -2 «
g (o sl s [ b el o
T‘E[O,T/\TR ]

(2.3.13) T »p
< Gy (E[HXOV;I]JFE[/ F? ds}—&—l)
0

for all n € N.

Now let us prove 2.3.5 (iii).

Step (iii).1. Again, we apply [td’s formula 2.3.3 to the process Xt(n) (see (2.3.11)). Next,
we use the results from Step (ii).2 and (ii).3 to calculate the occuring terms Iy (f) and
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I (f) in the stopped version of (2.3.11). Then we apply the absolute value and the triangle
inequality to get

p—2
[, 2,

ds

p9/ HXS_
2+(p(p—2)7)/0 [
+<p(p—2)205+1> /stgdS
b 0
po-afer ) ) [,
o [ (e ) ),
» /I/Z ol (x

(I s rar ox ) -

_2< S_,Pf< ),z>>H>u(ds,dz) )

s e

ds + (p— 2)2TC*

x™ p, f( ,Xs(’i),z)>H fi (ds, dz)

e

(2.3.14)

fort € [0,T]. On (2.3.14) we apply the supremum over [0, T](%n) A t} = [O, f]. The Lebesgue-
integrals stay unchanged, because all integrands are non-negative (also F' was chosen to
be non-negative) and hence the integrals are increasing in time. So we have

0t m
an [0 2 [
rEOt 2 0
2
P b

Ly [ x
H 0 H

:
+C1o / |x® HZ ds + pJy (£) + pJa (£) + Js () + (p — 2) 2TC,
0
(2.3.15)

—2 «
"2 x| as
H

@ ¢ p
HXé”) ds + Co / F? ds
v 0

with Cs=p (p —2)7, Co=p(p—2) 2C% + 1, Cro=p(p — 2) <C+ @) +5 (K+ ”,%2>
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and

p—2

Y

Ji (f) = sup / HX n)
20 = s [ L1l
1= s | [ [ (o (), - e,

- <Xs(7i),Pnf (s,Xﬁ”),z>>H> w(ds,dz)|.

Xs(’i), P,B (S,X§”>) dW§”)>H‘

2 Xs(:l),Pnf (s,Xﬁ),z)>H i (ds,dz)|,

o

We want to estimate Ji, Jo and J3 from above by the Lebesgue-integrals, which already
appeared, in expectation in the next three steps.

Step (iii).2. Let us estimate E [Jl (f)] Since J; without the supremum and absolute
value is a real-valued, local martingale by Step (ii).5, we may apply the Burkholder-Davis-
Gundy inequality D.5 (i) and then condition (B1) in the form of (2.3.8). Remember that
Cppa > 0 is the generic constant from D.5 (i). Then

E [Jl (f)} =FE | sup

re0,f] /0
Do
<" CopoE (/ [

< CgpgE sup HXﬁn)

o (0o (o) ),
1
2p— 2HB< )‘ 2ds)2
e ) o
0

p/fHXS(")
H Jo

2

Ly

(2.3.8)

—2
< CgpcE sup HX,E") '

C (14 B+ X ) + 71X ) ds

Let € > 0 arbitrary. We want to apply Young’s inequality with ¢ = 2 = ¢’ to the right
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2.3. Proof of the Main Theorem — Existence

hand side of the equation above which is equal to

N

E |v2e [ sup [|X(™
TE[Ot

1

. Cj;f (/Ot xm ‘T;{_Q (C (1 + F, + \|X§")H§{) _|_’)/HXs(n)H%> ds) 2

[ i
Jy I
0

Young P
< €E | sup HX(” +C1 E
7“6 Ot H

(e (1 o IX1) + X ds]

(m][? Y| p ?
—cE | sup HX” +C-CHE /HXS ds| +C-CHE / HX F,ds
TEOt H 0
4 p—2 a i p—2
+ACH E / HXS(”) HXSW ds| +C-CpE /HX§”> ds]
0 H 1% 0 H

(2.3.16)

2
where C11 =C11 (¢,CBpG) :CZSG. Again with Young’s inequality applied with ¢ = -2

p—2
p—2
q' =% on the HX -terms we arrive at

E[ ()] < eE | sup [|x]"
re[0.f]

E/Fds

t
J, I
0

el

+011-C<1+2(1)_2)>E
p
[l

dsl

2C-C
4= +C-CuT

+9C1 E
p

ds

for all ¢t € [0,T].

Step (iii).3. Now we come to E [J5 ({)]. By Step (ii).4, J, without the supremum and
absolute value is a martingale and again, we may apply the Burkholder-Davis-Gundy
inequality D.5 (i) with the already given, generic constant Cppg > 0, cf. Step (iii).2.
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Then condition (B1) in form of (2.3.12) gives us, for an arbitrary ¢ > 0,

RAIALE
, . 1
" ([ [y (i, miss ) |

<cunes ([0, [ [, o), s )

_2<C<1+F +HX >+fyHX

Xﬁ, P.f (s XSE,), )>H i (ds,dz)

E [Jg (f |: sup.

|

1
2

(2.3.12) i
< CppgE sup ||x " Z;I/ HX(n) "

rG[O,f]

'Cj;lf (/;HX(”) e (C <1+F n HX

)

I

=E |vV2¢ | sup HX")
rGOt

=

) o) a)

Since this is exactly the same situation as in (2.3.16), we directly conclude

E[J (f)] = cE ! sup HXﬁn)

i
/ F,ds
0

+C-Cn <1+2(2’_2))E [/fHXs(") ’
p 0
t
[
0

ds]

2 .
+ ¢-Cu +C-CnWT

b

E

—2 e
+~vC11 E ? HXS(n) ds
H |4

for all ¢ € [0, T7].

36

[N
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Step (iii).4. For the term E [J5 (£)] we have by Proposition 1.2.7 and Lemma C.1

e e ) e,

272<XS_,Pf(sX ") >>H‘u(ds,dz)]

e g (s x.) [ -

2_2 <X§"),Pnf (s,Xgn),z>>H ’ m (dz) ds]

[ (e,

with C1a = C12 (p) = p + 2P~ (2p — 3) (cf. proof of Lemma C.1). Now we apply (B2) to

the right hand side and arrive at
i t p
/ HXS(")HP ds / F? ds
0 H 0

t
/ HXﬁm +C - C1T
0
for all ¢ € [0, 7.

Step (iii).5. We want to apply Gronwall’s inequality. But first, let us combine the results
from Steps (iii).2 to (iii).4 and apply them to (2.3.15) in expectation. Then for all ¢ € [0, T

and € >0
i —2
Py /HXS@ "
0

{ b
/ FZ ds
0

2(p—2
+<Clo+2p'011'0(1+(pp)>+C’12+C>E

c.1
< CE

1 (5. X)) ) ds]

E[Js({)] <(Cri2+C)E +C-Cp2E

p—2
cocun [ [

(0%
ds
1%

e

«
ds
v

p
E | sup [x07)]
{ sup || X"

E [|| Xo|[%] + (Co +4C - C11 + C - C12)E +T<C-C'12+2C-Cn -1-2(17—2)0%)

/ | as

+ 2epE ! sup HXﬁn)

p—2 ‘

£

i a
+ (Cg + 2p")/011 + ’)/012) E [/ HXS(”) v ds
0

(2.3.17)
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" < || Xo|| 7 here. We choose ¢ = o= and define

We used HX én) 3

0
Ci3:= C13(p,0,7,CBpc) = % — (Cs + 2pyC11 +7C12)

0 2pC3
=p—7<p(p—2)+Z)Lf:m+29+2p‘l(2p—3)>

0 3 _

=2 _, (p(p—2) + 50" Chpg +p+277 (219—3)) :
Then Cq3 > 0, since we assumed v < I'. Furthermore we set

Cua = Cuu (Cepa,p) = (2+ 3Chpa) p — 3+ Cha,

3 9.2 2(p—2)
015 = 015 (p, K, C, CBDG) = C 1 + 5]) CBDG 1 + T + Clo + 012 and
3 P
Ci6 = Ci6 (p, T,C,Cppg) =T <C -Cra + P C-Chpe+2(p— 2)05> :

Now bringing the last two summands to the left hand side in (2.3.17) yields to

t
[ e

T »p
<E [HXO”%] + CI4E |:/ F¢ d5:| + 015E
0

p
+ Ci13E
H

v HXSW ds
H

o
\%4

1 E | sup HX,(,")
[04]

ds| + Cis.

[ o
0

H

(2.3.18)

By the definition of our stopping time TI(%n) the right hand side is finite. Since 0 <

"Xﬁn) 2 < SUP,fo,] Xﬁ”)HZI for all s € [0,7] and since the integrals are isotone we
have by Fubini’s theorem
t p t p ¢ p
E / HXSU ds :/ E[HXS(”) }dsé/ E | sup || X ds.
0 H 0 H 0 r€[0,s] H

For simplicity we define

———
v (t):=E Uot | x¢ :2 |xe zds] .

Then we can rewrite (2.3.18) in the following way:

t
¢ (1) +3C139 (1) <30+ / 3C15¢ (s) ds
0
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2.3. Proof of the Main Theorem — Existence

for all t € [0,T], where © :=E [|[Xo|[%] + C14 E [ [T Fs ds} + 1. Note that Cys > 0

because K > 0. Since 9 is non-negative we have

R R i i
© (t) + 3C13¢ (t) < 30 + / 3C15¢(s) ds < 30 +/ 3C15 (¢ (s) +3C139 (s)) ds
0 0

and we can apply Gronwall’s inequality B.5 to get

o (1) +3C130 (F) < 30630158 < 30301

PN

The non-negativity of ¢ and 1 and the fact that Ci3 > 0 gives us ¢ (f) < (t) +
3C131 (f) < 30e3¢5T and

(0 () +3C130 (7)) < —O¥T.

v (f) < o

= 303

Hence we have for all ¢t € [0,7] and n € N
R ~ 1 T &
) (t) + ¢ (t) < (3 + C) e3C1sT (E [||X0||’}{] + CnE [/ Fg ds} + 016>
13 0

1 T p
<(3+ g, ) 0w s cw e (z[xol) +E| [ Flas|+1),
13 0
(2.3.19)

where the constant Cs := C3 (p,7, 0, C,Cppa, K,T) := (3 + C%g) (14 C1q) (1 4 Cyg) 35T
is independent of R, t, n and the stopping time Tg’).
Step (iii).6. Finally we apply the monotone convergence theorem. Since (2.3.19) holds

for T € [0,T] and Tgl) — T as R — oo P-a.s. we get

T (0%
+E { / HXS(") ds}
0 1%

TAr —92

—E|lim [ s [X p*/ Sl i B

R—o0 (n) H 0 H
TE[O,T/\TR]

At
H

5| o [0

] TAr
- m]|” Tollx @] || x ™|
= lim [E sup X" +E HX” HX# ds

R=roo re [O,T/\TI(;)] H 0 v

(2.3.19) T p 7

< Cs (E (1 Xoll%] +E U FZds +1)
0 _
for all n € N.
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Notation. To simplify the used spaces in the following, we introduce the abbreviations
£ =L*(]0,T] x Q,dt ® P; V),
£ = La71 ([0,T] x Q,dt ® P;V*),
£2=1?([0,T) x Q,dt ® P, Ly (U; H)),
M=M:(P®2Z,dt@Pom;H).
2.3.7 Lemma. Suppose conditions (A1)-(A4}) and (B1)-(B3) hold and that F € L2 ([0, T]x

Q,dt x P). For each n € N let (Xt(n)) o be a solution to (2.3.1). Then there exists
telo,

a subsequence (ny),cy and elements X € £9n L™ ([0,T];LP (1 H)), Y € gy Z e g2,
g € M such that the following holds:

(i) X — X weakly in £ and weakly star in L™= ([0, T]; LP (Q; H)) as k — oo.

(i) PoyA (-, X)) Y weakly in £ as k — oo.

(iii) Pn B (-, X)) — Z weakly in £* and
/ P B (5, X)) aw{m) — / Z, AW,
0 0

weakly in L> ([0,T]; L* (Q; H)) as k — oc.

(iv) Py, f (~,X("’€), ) = g weakly in M and
| Pt (5.X00.2) mas.dz) > [ g(s2) s,
0Jz 0
weakly in L> ([0,T]; L*(Q; H)) as k — oc.

Proof. Part (i). By Lemma 2.3.5 (i) we know that

T
supE [/ HXt(n)
neN 0

is bounded in £%. Since 1 < a < 00, £% is reflexive and hence

(0%
dt] < 00,
1%

i.e. the sequence (X(n))neN

there exists a weakly convergent subsequence (X (”k))k N and an element X € £% such

that X (") — X weakly as k — oo.
Furthermore Lemma 2.3.5 (ii) tells us that

sup sup E [HXt(n’“)
keNt€[0,T]

p
] <o
H

So the sequence (X(nk))keN is bounded in L*> ([0,T7;LP(Q2; H)). We can identify
Le°([0,T];LP (2 H)) = (Ll ([0, T]; L5t (Q; H)>)>k and by the Banach-Alaoglu theorem
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2.3. Proof of the Main Theorem — Existence

E.1 there exists another weakly star convergent subsequence (X (”gc))k N and an element
€

X e L* ([0, T]; L? (; H)) such that x() & X weakly star as k — co. But we also have
x(m) & x weakly as k — 00, so we conclude X = X.
Part (ii). Also the space £ is reflexive (since 1 < o < 00) and so we only have to show

that the sequence (Pn;g A (-, X (”k))>k . where (n},) ren is the subsequence from the last
€

step, is bounded in £% . Then there exists another subsequence (n}) and an element

keN?
Y € £ such that Pn;cA <-, X(”Z)) — Y weakly as k — oo. We have by (A4) and Young’s

inequality (remember p = (3 + 2)

! Y
supE At X, dt
keN 0 %
(A4) T o B
< supE / <Ft ") > 1+ HXt(”k) dt
neN 0 \%4 H
[T . () [P G| || 0)||”
=supE F +F X, +K||X, X, dt
keN | Jo 1% H 1% H
Young [T @ 2 p
< supE / Ft+KHXt(nk) + F2+7 Xt( )
keN 0 v b b H
o , B
Xt(”’“) dt|.
\% H
(2.3.20)
We use Lemma 2.3.5 (i) to get
]
KsupE[/ X" dt]<oo
keN 0 14
Lemma 2.3.5 (ii) gives us
e 0]
KsupIE/ X,k X, F ‘ dt| < o0
keN 0 \% H
and with Fubini’s theorem
) T N\ ||P -9 p
P2 supE U Xt("k) dt] - Lsup [HX ] dt
P keN 0 H b keN H
—9 T
< P sup/ sup E H‘X } dt
P keNJo sel0,1] H
T(p—2 (2.3.4)
00 a2
p te[o T] H
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Finally, by the assumption that F € L% ([0,T] x Q,dt x P) and Young’s inequality, we see

that
T T
2 4 2 -2
E [/ (Pt + - F, > dt} <E [/ <th + p) dt]
0 b 0 p p

4 T » T(p—2
:EU Ffdt}+(p ) < e,
p 0 p

hence (2.3.20) is finite and so there exists the required subsequence (n}), .y C (7). cn-
Part (iii). As before, since the space £2 is reflexive, too, it is sufficient to show that

(Pn%B (-,X (”Z)>>k N is bounded in £2. Condition (B1), Fubini’s theorem and Lemma
€
2.3.5 (i) give us

[ T
supE /
keN 0

(B1) [T (n//)
< supE / Cl1+F+||X; "
0

[SiS]

CAN &
P.B <t,Xt k > dt
k Lo

2
ﬂ\
H
T T "
=sup <CT+CEU Ftdt]—i—C/ E HXt(”k)
keN 0 0

(2.3.3) T
< sup C’T—i—CE[/ Ftdt]—FC'T sup E '
keN 0 t€[0,T]

X9

keN

dt
1%
T
dt+~E [/
0
>+701

2
)

)

H

2
X%

H

(2.3.3) T
< CT+CE[/ Ftdt} +C1 (OT +7) < oo,
0

(2.3.21)

. . . . T =2 Tk .
since by Holder’s inequality E [fo F dt} <T7» E [fo F? dt} < 00. So there exists
a subsequence (ny’), .y such that (Png’B <.7 X (””))k y converges weakly in £2 to an

€

element Z € £2. .
Let us come to the second part of (iii): Since P, is the orthogonal projection onto

1"

Span{gi,...,gn} in U, without loss of generality we have that P, B <t, Xt(n’“ )) 15”%/

converges weakly to Z in £2. Furthermore

/0 'P.B (S,Xt(n)> dwm = /0 'P.B (S,Xt(n)) B, dw,

holds for all n € N. The mapping
Tty : €2 — L2((0,T] x Q: H), @ s Tntyy (@) = /<I>dW

is linear and continuous, so it preserves weak convergence. Hence

/ Py B <3,Xt(”k)> aw ) / P B <3,X§"’5)> Py dW, — / Zy AW,
0 0 0

42



2.3. Proof of the Main Theorem — Existence

weakly as k — oc.
Part (iv). If we identify

M=L>QAx[0,T|x Z,P®Z,Pxdtxm;H),

then we see that 91 is reflexive, too. The proof of boundedness of ( mf < x(n m), ))

is also done with (B1):
m (dz) dt] )

sup (E P ///f <t X( ’”) >
keN
2 /// @
Jo b))
H \4

(BL) T n")
< sup | E / C 1—|—Ft—|—HX
keN i 0
<oco cof. (2.3.21).
So there exists a subsequence (1) ey C (7)), oy Which fulfills (i)-(iv). Especially there is
an element g € M that is the weakly limit of Py, f (-,X éﬁk), ) as k — oo. The second

part of (iv) follows identically as in the proof before: Since the mapping

keN

Intz: M — L2([0,T] x 0 H), &~ Int, // (s,2) i1 (ds,dz)

is linear and continuous, it preserves weak convergence and we obtain that

//Pnkf (5 x{™,2) i (ds, ) —>/ s,2) fi(ds,dz)
0 JZ

weakly as k — oc.
O

2.3.8 Remark. In the situation of Lemma 2.3.7 all the dt ® P-versions X, Y and Z are
progressively measurable, since the approximants are progressively measurable.

2.3.2. Construction of the infinite dimensional Solution

Let us recall what we have achieved so far. By the Galerkin approximation we considered
the following stochastic partial differential equation in the finite dimensional space H,,
neN:

dY (t) =P, A (t,Y (t)) dt + P, B (t,Y (t)) dw,™

/ Pof (1Y (t—),2) fi(dt,d2), (2.3.22)
Y (0) :PnX07
By Lemma 2.3.1 this equation has a unique strong solution (Xt(n)>t 0] for each n € N.
€ )

Each solution fulfills some apriori estimates from Lemma 2.3.5 which allowed us to find

limiting elements X, Y, Z and g as in Lemma 2.3.7 for the sequence of solutions (X (”))n N’
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Now we come back to our origin equation
AX () =A (X (0) dt + B (X (0) AW 0 + [ F(X(0),2) p(dda),
z
X (0) =Xo,

t €[0,T). Let X, Y, Z, g be as in Lemma 2.3.7. We can define the following stochastic
process:

X (t) = Xo +/0 Y (s) ds —I—/O Z (s) dW (s) +/0 /Zg(s,z) a(ds,dz), (2.3.23)

t € [0,7]. In the following we will see that this process is a V*-valued modification of
the V-valued process X and that this process is a solution to our equation (2.1.1) which
finishes the proof of uniqueness.

Notation. For abbreviation we set
y (ne) . P, A (,’X(nk)> 7 A - P, B (,’X(nk)> ’ f(nk) =P, f (,’X(nk)’ ) )

2.3.9 Lemma. The stochastic process (Xi),cpoq) defined by (2.5.23) is a V*-valued mod-
ification of X.

Proof. This proof is a straightforwarded extension of the proof of [PR07, Theorem 4.2.4,
p. 86]. We have to show X = X dt ® P almost everywhere in V.

Let v € U,>; Hn (CV)and p € L ([0,T] x 2). Using Lemma 2.3.7 (i) and then equation
(2.3.22) and Fubini’s theorem we get

E UOT (X (1) ,go(t)v>vdt] = lim E [/OT V*<X(”’“) (t) ,¢(t)v>vdt}

k—o0

= lim (E /OT (P Xo, 0 (1) U>th} +E [/OT /Ot (v (s),cp(t)v>vdsdt}
+E /OT </Ot 200 (5) AW ™) (), (t)v>Hdt]
+E:/OT</Ot/Zf(”’“)(s,z)ﬁ(ds,dz),cp(t)v>Hdt])

= lim (E :(PnkXo,wH/OTgo(t) dt] +E [/OT V*<Y("k) (s),/f@(t) dtv>vd5]

+/0TE [</Ot 20 (s) AW ) (s) ’(p(t)v>H] it
+/TE [</t/ £ (5. 2) u(ds,dz),cp(t)y> ] dt)
0 0 Jz .
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On the right hand side of the above equation we can now use our weak convergence results
from Lemma 2.3.7 (ii)-(iv) and this yields to

’“ILH;O<E [<Pn'“XO’U>H /oTso(t) dt} e [/OT V*<Y(nk) (S)v/fso(t) dtv>vds]
Lol e |
+/0TE [</o /Z FW) (s,2) i (ds, d2), w(t)v>H] dt)
:E[/OT V*<XO+/‘:Y(S) ds+/0tZ(s) dW(s)+/0t/Zg(s,z)ﬂ(ds,dz),¢(t)v>vdt}

~E [/OT X (@), ()0l ]

what was to be shown.

2.3.10 Proposition. The stochastic process (Xi),cpo.r) defined by (2.5.25)

(i) is H-valued, cadlag, (Fi)-adapted and satisfies P-a.s. the following Ito-formula:
2 2 ! o
Il = 100+ [ (2, (%), ) ds
t t
L1208, s+ [ [ o)l was,as) + 201 1)

for t € [0,T], where

t t
M (t) :/ <Xs>stWs>H+/ / (X, g(s,2)), i(ds,d2)
0 0 Jz
1 a cadlag, real-valued, local martingale.

(11) fulfills
E

sup HXtH%II < 0.
te[0,7)

Proof. This proof is inspired by [Stel2, Theorem 5.9].
Step (i).1. Let us apply [GK82, Theorem 2| with

h(t) ::/OtZ(s) dW(s)+/0t/Zg(s,z)ﬂ(ds,dz)
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and V (s) = s. Then X defined by (2.3.23) is H-valued, cadlag, (F;)-adapted and we have
P-as.

t
2 2 Y%
Xl = %ol + [ 200X, ds

+/O (Xs—,dhg)y + [R],

for all ¢ € [0,T], where [h], denotes the square bracket of h (see Definition D.3) and we
already used that X is a V*-valued modification of X by Lemma 2.3.9.

Step (i).2. Since X;_ as an (F;)-adapted cadlag process is predicatble and since Z €
Nw (0,T), we know that the stochastic integral fot (Xs—, ZsdWy) y is a real-valued local
martingale.

Furthermore, since g € N (T, Z; H), we obtain that

t
/ / <X$—7g(svz)>]—[ la(dsadz) = Nt
0 JZ
is a real-valued local martingale if we stop it by
Tp=nf{t 20| Ny >n} AT

for n € N, since we have lim,,_,o, 7, = 1T P-a.s.
From this we see that the stochastic integral

/Ot (Xs_,dhs)H—/Ot (Xs_,ZSdW5>H—|—/Ot/Z<X5_,g(s,z))Hu(ds,dz)

is a real-valued, cadlag, local martingale.
Step (i).3. We know that
U Z, dWs} _ / 12,12, ds
0 t 0
and by Proposition 1.2.8

[/0./29(5,7:)ﬁ(ds,dz)]tz/ot/zm(s,z)ﬂz p(ds,dz),

so we conclude

t t
), = /0 12,2, ds + /0 / g (s, ) w0 (ds.dz)

Now we want to prove (ii).
Step (ii).1. We define

tri=inf {t > 0|||X¢||,, > R} AT,

I
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which is a stopping time due to Theorem D.4 and use the notation
t:=t(t,R)=tATR

for t € [0,7] and R > 0. We have 7 — T for R — oo P-a.s. It6’s formula from 2.3.10 (i)
applied with Holder’s inequality yields to

a—1 1
T o e T o
il < ol (e as) (1 as)

T T
4 /0 1Z.J2, ds + /0 /Z lg (5, 2)I13, 4 (ds, d2)

/Ot/Z<Xs—,g(s,z)>H fi (ds, dz)

t
+2’/ <X’s_,ZSdWS>H' 2
0

Now we take the supremum over [0, f] and then apply the expectation to both sides:

E | sup [IX]%
56[0,1?]

) T et T o
<efixz] v | ([ miEas) ([ 1Ry o)

+E {/OTHZSH%Q as| + [/OT/Z||g<s7z>H%I (s, d2)

/OT/Z<X5—79(3,2)>H fi (ds, dz)

(2.3.24)

+2E | sup
rG[O,f]

/<X’S_,ZSdWS>H‘ +2E | sup
0 rE[O,f]

Step (ii).2. We apply the Burkholder-Davis-Gundy inequality D.5 (i) on the first sum-
mand in the last row of (2.3.24) and Lemma 2.3.9

2E | sup
rE[O,f]

[z zaw,

1
2

D.5 (4) 't 3
<"2Cppe E [ / <Xs,stWs>H]
0

t

t
<20pcE (/0 HX#HZ ||Zs||%2 ds)
1

_ : 1
2.3.9
= 2CBDGH”-‘: (/ ||X5,||§{ ||ZS||%2 ds)
0

47



Chapter 2. Main Theorem

For € > 0 and by Young’s inequality we get

(S

2E | sup

HXs I3 126117, dé‘)
re[O,f]

| %z, dWs>H‘ <2CppE
0

sEOt

3 | i !
<2CBpcE | | € sup [ X, HH (5/0 HZSH%Q ds)

Young I3 1 T
< 2Cppc E 5 Sup X7 + 2/ HZsH%Q ds
56[0,5] & Jo

C T
=CppeeE | sup | X% | + BDGE[/ AR ds]
sE[O,f] € 0

and we used sup¢g 4 HXS_HH < supgepo g 1 Xs ||H here.

Step (ii).3. Again, the Burkholder-Davis-Gundy inequality D.5 (i) applied to the second
term in the last row of (2.3.24) and then Proposition 1.2.8 together with the Cauchy-
Schwarz inequality yields to

sup

refo,f] //<XS ,9(5,2)) y fi(ds, dz)

D.i(l)2CBDGE [/0 /Z<XS—79(S,Z)>HH(dS’dZ)] é]

t

r . 1
1.2.8 t _ 2 9 2
<2naE | [ 1% o .2l (5.2

t
<20 | | swp X0 [ [ lats 2l nsan) | |
se[0] 0 Jz

[SIE

where we used that X = X dt ® P-a.e. by Lemma 2.3.9 and that SUPgeo,4] 1 X |13 <
SUDPsc0,4] | X||5; in the last step. Let € > 0. Proposition 1.2.7 and Young’s inequality leads
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to
- 1
f 2
20 | sup 105 [ [ (o2 (s, az)
se[o,] 0 Jz
. " -
2.7
27906 | (& sup X2 ( | [ .21 m (@) ds>
se[o,f] €Jo Jz
i 2 Cspa t 2 ]
<CppeeE | swp X2 | + B2 g / / lg (s, 2)1% m (ds) ds| .
SG[O,f] € 0 Jz J

Step (ii).4. Combining the results from the last two steps for e = ﬁ and inserting

BDG
them into (2.3.24) yields to

<E [ Xol}| +E (/OTnma? ds)aal (/OTHXSW ds)‘l“
#a0oa (B[ [ 1tz o v [ [ [ hote. 2 nas,a0)] )

(2.3.25)

1
—-E

B sup ||XS||§{

sE[O,f]

Since the right hand side is independent of R, we only have to show that it is finite. For
p > 2 (if p = 2 there is nothing to show) we infer with Holder’s inequality

hSEIN]

9 2 p=2
E[I1Xol] <E[IXol})7 BT =E [IXoll}]? < oo.

Since X € £* by Lemma 2.3.7 (i) and since Y € £ by Lemma 2.3.7 (ii) we see with

Young’s inequality for ¢ = =%, ¢’ =

E (/OTanreff ds)aal (/OTHXSH“V ds)i

a—1 T e 1 T
<— EUO 1Yt ds]+aEU0 |{X5H3ds}<oo.

From Lemma 2.3.7 (iii) we have Z € £2 and therefore

T
E [/ 1Z13, ds] < 00
0

and, by Proposition 1.2.7 and Lemma 2.3.7 (iv), we see that

B [/OT/ZHg@,z)n%{ (s, d2)| '2E [/OT/Z\g<s,z>||?{ m (dz) ds| < oo.
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Hence

E | sup HXSH%, < 00
36[0,1?]

independent of R. Letting R — co, we finish the proof.
O

2.3.11 Corollary. In the situation of Proposition 2.3.10, the appearing local martingale

/Ot <Xs,stW3>H+/0t/Z<Xs,g(S,Z)>H i (ds, dz2)

is a (global) martingale.

Proof. We use the Cauchy-Schwarz inequality, Lemma 2.3.9 and Hoélder’s inequality on

T 2 2 %
<E ( [z, ds)

i ) 3 T ) 3
E <sup ||XS||H> ([ 1212, o)
t€[0,71] 0

_ 1
Hélder 9 2 T 9 3
SR | swp IX0%| E / 1Z:|12, ds
| t€[0,T] 0

E UO (X, Z, dWs>H]j

<oo

by Proposition 2.3.10 (ii) and Z € £2. Doing the same together with Proposition 1.2.7

yiclds to
[ [ steany niana)] |

( [ A AT u(ds,dz>)é

<E (é’ﬁé% | ||XS||%,>é ([ [ o2 mas ds)é

1 1
2 T 3
<E | sup HXSH?LI] E[/ [ o (s, m@2) ds} <o,
0

| t€[0,T]

since g € 9 and Proposition 2.3.10 (ii).
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Now, using Theorem D.5 (ii), we see that

/Ot <XS’stW3>H+/0t/Z<Xsa9(5»Z)>H fi(ds,dz)

is a global L' (Q; R)-martingale.

The following Proposition finishes the proof of existence.
2.3.12 Proposition. In the above situation we have

A(-,X) =Y dt ® P-a.e.,

B(',X) =7 dt ® P-a.e.,

f (S,Xs_,z) =g(s,z) dt® P ®me-a.e.
Therefore the process (Xi)yejo ) given by (2.5.23) is a solution to (2.1.1).
Proof. Define
N:=LNLP(Q; L™ ([0,T];H)).

Let ¢ be a V-valued, progressively measurable version of an element in 91 such that

E[/OTg(qﬁ) ds} < 0.

In the following we will see that the integral fg (F (s)+0(o(s))) ds has to be finite for
our calculations. Since V < H continuously and by our estimate of ¢ in condition (B3),
the following definition is justified: Let 7¢: Q — [0, T defined by

7% :=7%(4,R) ::inf{ogth‘/Ot(F(sH\|¢(s)\|€‘,) ds>R}/\T

for R > 0. Then 7¢ is a stopping time. For simplicity we set
t:=1t(t,¢,R) =tAT® 0<t<T.

Step 1. Applying 1t6’s formula together with 1t6’s product rule we obtain for ¢ € [0, T']

o] 2 [T

/Of o= Ji (Pt o(ér))dr <2 . <A (8, Xs(nk)> ) Xéﬁk)>v " ’

)]

P, f (s, XS(T“), z) Hi] 1 (dz,ds)] )

E [e_ JE(Fato(ps))ds {

2
= E

P,.B (s, X§"k>) By,

Lo

— (Fy+0(6,)) || x

i
/ / o= J3 (Frto(o,)dr
0 JZ

+E
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where we used that the expectation of the appearing martingale is zero. Proposition 1.2.7

gives us
2 el
_E [/;e—fé(m@(m))dr (QV*<A (5. X00) X 4]
/ ‘ o f s Xﬁ"), )HH (dz)) ds]
e [/Oie_f;(Fr-i-Q((ﬁr))dr <2 v*<‘4 (s’ Xg(m)) ,Xénk)>v N HB <S’X8(nk)>‘ ;
+ /Z Hf (S,Xs(”k),z)Hj{m(dz)> ds].

In the last step we made the norms bigger by leaving out the projection P, .
Step 2. It is helpful in the following calculations to have in mind that by the defintion of
the inner product we can calculate

(k)
Xi’c

E [e JE(Pere(62)ds

2

Py, B <5a ngnk)) ng

Lo

(Bt oo |x

— (Fy+ 0(6)) || x

(2.3.26)

A ) X0, = (4 () At 38 ),
+v*<A(S’¢S)7Xs(nk) + <A (S,Xs(”k)>—A(s,¢s),¢s> )

\%4

oo, = [ (o) - e

42 <B (s, XS("k)) B (s, <Z>s)>L :

2

— 1B (s, s)lIZ,

7 (s, x,2) [ = |7 (5.%090,2) = £ (5,602, = 15 (5,00 2
(5 (X0 2) 100,009
and

e, - e,

= ll sl — 2 < x{me), ¢S>H. (2.3.27)

When referring to (2.3.27) we think of one of the four equations above depending on the
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context. Now, the local monotonicity condition (A2) gives us for

2 (4 () x00) o  (xi)o f (s x0 i

2, (Aox) At 0 ) () <t

Lo

[ (sx002) = s s mi)
w2 (45,00, X09) 42 (A5, X)) — A(s5,6,),6,)
42 <B (S,Xs(nk)> B (s,¢s)>L2 — 1B (s,65)I7,

+/Z (2 <f (s,XﬁWLz) ,f(s,¢s,z)>H — ||f(s,¢s,z)\|§{) m (dz)

\%

(A2)
< (Bt o(9)]

X -,
+2 <A (s, ¢s) ,X§“k>>v +2 <A (s, X§”k)) — A(s, 05) v¢s>
+2(B (s, X)) B(s,00), ~ B0,

+/Z (2 <f (s,Xénk)7z> f (s,¢s,z)>H —lf (S,qﬁs,z)H?{) m (dz).

\%

(2.3.28)
Inserting (2.3.28) into (2.3.26) yields to
7 2 2
E [e—jo(Ferg((zus))ds ‘ x () } _F “ () ]
g O u
i -
<E / e~ Jo (Fre(@r))dr ( (Fs +0(9s)) ’ Xs(nk) - ¢8H2 — (Fs +0(9s)) ’ Xs(nk) .
0 H H
() (ne) ) _
+2 (A(5,00), X)) 42 (A5, X))~ A(s,00),65)
+2(B (5. X(™) ,B(s.02)), ~ 1B (s,
+ /Z (2(F (5, X02) f(5.002)) = I1f (5,002l m(dz)) ds].
(2.3.29)
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Now, by (2.3.27), we obtain from (2.3.29)

2

i
E / e f;(FT+Q(¢T))dT < (Fs +0 (‘bs)) "Xénk) - ¢s

0 (Rt o(o)) X

H

+2 (Als00), X)) 42 (A5, X™)) = A(s,0.) . 0s)

+2(B(5,X(W) B(5,00) 1B (09l
+/Z (2 <f (s,Xs(”k)’z> ,f(s,¢s,z)>H — ||f(s,¢>s,z)\|§{) m(dz)> ds]

=E /56_ Jo (Fre(ér))dr < (Fs + o(¢s)) (||¢s\|12q —2 <Xs<nk)’ ¢S>H>

0

T2y <A (5,s) ’Xs(nk)>v 20 <A (S’ XS(nk)) —Als9) 7¢S>V

+2(B (s, X(™) ,B(s.00) B (.07,

[ (207 (5 X00.2) 1 (0002)) , ~ 15 (51002 m(dz)) ds].

Step 3. Let ¢ € L* ([0,T];dt) be non-negative. Then we have

T X
E [ [ (e-féwsﬂ(%”ds 1% - onuz) dt]
0

T i
<liminf E {/ n (e_ Jo (Fs4o(¢s))ds
0

k—o0

2
-

2
H) dt]
/0 ) wt( /0 ' Bt ( (Fy+ 0(60)) (ol =2 (X0 04) )

+ 2V*<A(s,¢)s) ,Xs(”k)>

<liminf E
k—o0

+2 <A (s, Xs(”k)> — A(s, b5) ,¢S>V

\%4

+2(B (s, X(™) B(s.6)), B (.09,

w0 (5 X09.2) 5 (5000 2)) 15 o)) m () ) ) dt].
(2.3.30)

By Ité’s formula in Proposition 2.3.10 and It6’s product rule we have for ¢ € 91N M
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together with Corollary 2.3.11
E [e—./;§<Fs+g<¢s>>ds || Xt||§4 ~E [0
t S(F, d 5 2
. /0 o i (Frtelon) r(z (Y X+ 12602, (2.331)

— (Fs + 0(65)) |1 X517 + /Z lg (s, 2)II% m(d2)> d8]-

We can now insert (2.3.31) into (2.3.30) in the following way by using Fubini’s theorem:

T [ B
E [/0 djt (/ 6_‘]0 (FT+Q(¢T‘))dT <2 V*<YS,XS>V+ ”ZSH%2

0
C(Fyt 0(60) | Xl + /Z lg (s, )% m(dz)) ds> dt]
(2.3.31) T _ff(p +o(¢s))ds 2 2
2 g / e (e B Ere@ds  x,12, x0|2, ) dt
0

(2:3.30) /OT " ( /Ofe— J3 (Frte(@r))dr < (K + 0(¢s)) (IIqﬁstq -2 <X8(nk)’ ¢S>H)

< lilgnianE
+2 <A (s, ¢s) ,Xgnk>>v +2 <A (s, XS(w)) — A(s,¢s) ¢3>v

— 00

+2(B (s, X)) B(s.6), ~IB(s.09)l,

[0 (5 X09.2) (5000 20), — 1F (o2 ) m (a2 ) ) dt].

Hence we get with the definition of the norm and inner product (cf. (2.3.27) in step 2) by
bringing the terms on the right hand side to the left hand side

E

T t
/0 wt(/ o I3 (Frto(é0)dr (2 (Y= A(s,06), Xs — 6)y + 1 Zs — B(5,69)|2,

0

— (Fs+ 0(6)) | Xs — o517, + /Z g (s,2) = f (5,05, 2) |7 m (dz)) ds) dt] <0.

(2.3.32)
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Now we take ¢ = X and get by (2.3.32) that

0<E [/OT ¢t</0£e—fos(Fr+g(Xr)>dr<

HZS - B (s,)_(s)Hi2 + /Z Hg(s,z) —f (s,)_(s,z)HiI m(dz)) ds) dt]

<0
and letting R — oo we see that we have by the arbitrariness of ¢
Z=B(,X) ing,
g=7F (-,)_(, ) in 9.

Step 4. We consider the following inequality

T i
/0 7vbt(/ effo (Frte(ér))dr (2 v <)/s —A (57 ¢s) 7Xs - ¢5>V

0

E

(2.3.33)

_ (2.3.32)
_(F5+Q(¢S))|‘XS_¢8H2>ds) dt < 0

Let € >0, v eV and ¢ € L ([0,T] x Q,dt ® P;R). For ¢ = X — egv in (2.3.33) we get

/OT " ( /Of o I3 (Frto(Kr—cdrv) )ar <2 . <Y 4 (8’ X, e éﬁsv) - ‘55”>v

’2 > ds) dt]

H

. [ /T " ( /fe S (Frto( Rr—edro))dr <2 g . <Y 4 (S’ % . gESv) ’“>v
0 0

‘2 > ds> dt]

H

By the hemicontinuity (A1) the map ¢ — ; <YS —A (s, X, — 5q§sv> ,v>v is continuous,

(2.3.33)
0 > E

(Rt e (5 ) b

—€ <Fs + 0 ()_(8 — 5¢~>sv)) ‘ ¢~>sv

(2.3.34)

hence we have lim._,q v*<Ys —A (5,)_(3 — 5(;%1}) ,U>V = <YS —A (S,XS) ,v>v. Since

we assumed o to be hemicontinuous, too, we also conclude lim._, 0 (X s — 5(;;31)) =9 ()_( s).
Now, by dividing by € (> 0) and then letting ¢ — 0 in (2.3.34) we come to

0>E [/OT Wy (/fe—f(f(Fr+@(Xr))dr (2(58 V*<Ys _A (S,XS) ’U>V) ds) dt] .

0
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Again, by the arbitrariness of ¥ and (Z) and with R — oo we can finally conclude
Y=A (-,X’) dt ® P-a.e.

We still lack the proof of the regularity estimates 2.2.1 (i) and 2.2.1 (ii).
2.3.13 Corollary. Let (X¢),cqo. 1y the stochastic process defined in (2.5.25).
(i) For the dt ® P-version X of X we have
X e LY([0,T] x Q,dt ® P; V)N L*([0,T] x Q,dt ® P; H).

(ii) There exists a constant C' = C (p,7,0,C, K, T) > 0 such that
sup (1 (0] < € (& 10l + & [ [ £ at] +1)
t€[0,T) 0
(iii) If 0 < v < T, then for the dt ® P-version X of X we have
X e LP (9L ([0,T); H))
and there exists a constant C = C (p,7,0,C,Cppa, K,T) > 0 such that

E | sup [|X (8l

t€[0,T]

T p
<C <IE (1 Xoll%] +E VO F? dt} + 1> .

Proof. Part (i). We note that X € LY([0,T] x Q,dt ® P; V) = £* is already fulfilled by
Lemma 2.3.5 (i). Since X = X dt ® P-a.e. by Lemma 2.3.9 we deduce from Proposition

2.3.10 (ii)
T2 T 2 2 T
B[ [ 1%y o] —£[ [ 160 0] <2 | o pxi [
0 0 t€[0,7] 0

=TE

sup ”XtH?{] < o0,
t€[0,T]
therefore X € L?([0,T] x Q,dt ® P; H).
Part (ii). By Proposition 2.3.10 (i), (Xt);cp 7] is cadlag and hence t — | X¢ %, is right
lower semicontinuous and therefore also t — E [||[ X%, ]. By Lemma 2.3.7 (i), the d¢t ® P-
version X of X is also the weakly star limit of (X("k)) in L ([0,T],dt; LP (2; H)).
Hence we have together with Lemma E.2

p

H

keN

sup E [HXtH’;I] =esssupE [HXtH%] = esssupE [H)@HZ]
t€[0,T te[0,7 te€[0,7)

S 1P . . (nk)
< tes[lé%} E [HXtHH] S hlglogf (tes[lé%] HXt

(2.3.4) T »p
< C (IE (1 Xoll%] +E [/ ok dt} + 1) ,
0
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where C = C (p,v,6,C, K,T) > 0.

Part (iii). Since 0 < vy < T, we can use Lemma 2.3.5 (iii) to see that X (™) — X weakly
star in LP ([0,T]; L> (€; H)) for the dt ® P-version X of X. By Proposition 2.3.10 (i),
(Xt)sepo,r) is cadlag and hence t — | X¢||%; is right lower semicontinuous. Therefore Lemma
E.2 and (2.3.5) yields to

E [ sup || Xl | =E esssupHXtH%] =E [esssupHXtH’;{]
te[0,T | t€[0, 1] te[0,7
<E| swp | X[} | <liminfE | sup || x¢0["
| t€[0,7) k—o0 te[0,T] H

(2.35) T
< C <E [1Xol%,] +E [/ Fy? dt} + 1> ,
0

where C = C’(p,’y,@, C,Cppg, K,T) > 0.

2.4. Proof of the Main Theorem — Uniqueness

2.4.1 Proposition. Let (Xi),cor), (Ye)iepor) be solutions of 2.1.1 with initial values
Xo,Yy € LPA+2 (Q, Fo, P; H) respectively given by Theorem 2.2.1, such that Xo = Yy P-
a.s. Let 0 < v <TI. Then P-a.s.

X =Y,
for every t € [0,T7].

2.4.2 Remark. The two solutions are pathwise unique by the path cadlag property of X
andY i H.

Proof. We are P-a.s. in the following situation for ¢ € [0, T:

t t t
Xy :X0+/ A (s, Xs) ds—l—/ B (s, Xy) dWs+/ /f(s,Xs_,z) i (ds,dz),
0 0 0Jz

t t t
Yt:YOJr/ Al(s,Ys) ds+/ B (s,Ys) dW5+/ /f(s,Ys,z)ﬂ(ds,dz).
0 0 0 JZ

Let Y the dt ® P-version of Y. We apply Ito’s formula from 2.3.10 (i) together with the
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product rule and P-a.s. come to

e~ o (Kte(¥2))ds | x, — v;)%,

t _
= | Xo - Yoll% + /O e~ Ji (Ire(¥7) )ar (2 A (s, X)) = A(s,Y3), Xo — Yoy

+ 1B (s, Xo)l7, — (K + o (¥)) 1Xs — YAI%) ds

// o (Be(Vo)dr | £ (s, X, 2) — f (s, Yo, 2)|I 1(ds, d2)

n 2/ ~J(Kre(¥))dr (x| 'y, B(s, X,) dW, — B (s,Ys) dWy)

+2/ / o (Ke(V)ar (X Y, f (s, Xo_,2) — f (5, Yer,2))y fi(ds,d2).

We apply expectation to both sides and use Proposition 1.2.7. Then the local monotonicity
condition (A2) leads to

B [e R UerlT)oe |, — %3] < 10 - Yol

+2F [/t —Jo (Kte(¥))dr (x_ v, B(s,Xs) dW, — B (s, Ys) dWs>H]

+2E[// N (X, Yo (5, X 12) = F (5 Vem 2 1 (005)

By Corollary 2.3.11 the expectation of the appearing martingales is zero. Therefore we
conclude

E [em fo(re™))as 1 x, — v 3] < E[I1X0 - Yoll3]
and by the assumption that Xg = Yy P-a.s.

0<E [e*f(f(m@(’?s))ds 1 — Y;SH%I} <0 forallte0,T].

If we can show that fo (K + 0(Ys)) ds < co P-ass., then we are done. By condition (B3)

T B e _
/0 (K+Q(Ys)) dSSC'/() (1+HYSHV) (1_’_HYSHf{> ds

[ r « Ts B - a1y ||8
= [roe (5l s [CIRIG as [ IR 105 o
cclre [Tt ase s 1505 (r+ [ 1517 o)

s€[0,7]

(2.4.1)

el st 0) G )]
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Chapter 2. Main Theorem

where we used Youngs’s inequality with ¢ = 542 i1 the last step. This step is unnecessary

if 5 = 0, cf. Remark 2.3.6 (i). The right hand side of (2.4.1) is P-a.e. finite, since
Y € L*([0,T] x Q,dt ® P; V) and Y € LP (Q; L> ([0,7]; H)) by Lemma 2.3.13 (i) and
2.3.13 (iii) respectively.

O
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3. Application to Examples

In this chapter we are going to establish existence and uniqueness results to semi-linear
and quasi-linear stochastic partial differential equations. Our main references are [LR10],
[PRO7|, [BLZ11] and [LS14].

Notation. We denote the i-th spatial derivative B%i by D;. For q > 1 let ¢’ its dual such

that % + % = 1. If a Hilbert space Hy is continuously embedded into another Hilbert space

Hs, we denote this with Hi — H>.

Let Hé P (A;R) denote the standard Sobolev space with the Sobolev norm

1
P
lully = llullgze = (/AIW (@) dl‘) , uwe Hy? (AR).

We set LP (A) := LP (A;R) =: Hy" (A) and Hy? (A;R) =: Hy (A).
Let A C R d € N, an open, bounded domain and let ¢ denote the Lebesgue measure on
A. For 1 < p < oo we consider the Gelfand triple

*
V= Hy? (MR) € H = L2 (AR) © (Hy” (AR)) = V7,

Let 0 < T < oo fixed. Let (2, F, P) be a probability space with normal filtration (F3),,
t > 0. Let (Z, Z,m) a measurable space with a o-finite measure m on it. Fix a stationary
(F¢)-Poisson point processes p on Z and (2, F, P) and let it the compensated Poisson
random measure to p. Let (W), a U-valued cylindrical Wiener process on (£, F¢, P),
where U is a separable Hilbert space.
3.1. Semilinear stochastic equations
Let p = 2. Then our Gelfand triple has the form

V=H)*(A) c L>(A)=H c H;"* (A) = V™.

For 1 <i<dlet b, fi: A — Rand set b:= (by,...,bq), f:=(f1,...,faq). ForueV =
Hé’2 (A) we define the operators

Af(u) == Au+ (f (u), Vu)pa,
Ay (1) == Au+ (b, Vi)
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and

Ay (W) i= Af () + fo (u (Au+2fz ) Diu+ fo(w) ),

Ap g () = Ay (u) + fo (u) ( = Au+ Z biDiu + fo (u) )

i=1
Consider the following equation
dX (t) = A(X (t)) dt+ B (X (t)) AW (¢t) + /Zg(X (t—),z) @(dz,ds),

X (0) = Xo,

(3.1.1)

A ifd=1ord=2
where A := Ffos ' o "and W and j fulfill the same properties as in
A fo else

Section 2.1. Suppose that there exist Cgr, 7, 5,17 = 0 such that the following holds:

(SL1) f=(f1,..-,fs) : R — R%is Lipschitz with Lipschitz constant L.

(SL2) fo: R — R is continuous with fy (0) = 0 and satisfies for all z,y € R

| fo(x)] < Csp (1+ 2|7,
(fo () = fo)) (x—y) < Csp (L+ |yl (x —y)*.

(SL3) B: Hé’Q (A;R) — Lo (U; L? (A;R)) satisfies for all vy, vy € Hé’2 (A;R)
B (v1) — B (v)l|7, < Csi (1 +/ |Vwg|? dg) / luy — vg]? dE.
A A

(SL4) g: R x Z — R such that for all v,v,v9 € H01’2 (A;R) we have

[ [latns) =gt P dgm@s) < Csu (14 [ (9P ae) [ Jor - wof a
/Z(/A 9(v, )P d£>cm(dZ)<CSL (1+</A|v\2 i) )
v ( [ dé)H ([ 1w ac)

3, ifd=1,
where ( = { max {2;r}, ifd=2,
8 else.

3
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3.1. Semilinear stochastic equations

3.1.1 Remark. (i) The Lipschitz condition on f implies for all x € R

[ @) <|1f () = FO)+ [f O)] < Ly [z + [ (0)] -

(i) The weakened Lipschitz condition on B in (SL3) implies linear growth with respect
to ||| restricted to V: By (SL3) we have for all v € HS’Q (A)

1B (W)L, = 1B (v) = B(0) + B(0)|l, <[IB () =B, +B0)L,
< Vst vl + 1B O, -

Set Lo :=||B(0)]|;2. Then
1B ()7, < Csc vl + L +2v/CscLo vl -

Young’s inequality gives

1 1
2 (Viito o) <2 (0seid+ 3 ol ).
and we conclude
IB ()17, < (Csr + 1) ||vll3 + (Csr + 1) L§.

Hence, with L := (1+ Csr) (1+ L) > 0, we have for all v € Hy™ (A)
1B, < Ln (14 ol

(i) We have the same inequality for g. Define Int,, (@) := [, ¢ (2) m(dz). Then for
all w € HS’2 (A) by Young’s inequality and condition (SLJ) we have for Lo :=

1ot (Jlg (01 )

e (llg (0)13) < Mt ((llg (@) = 9 O) 1 + 19 (0)]1:)*)
<ty (|lg (u) = g ) ) + Lo + 2ty (g (w) = g )7 19 (0)] 1)
Y oun,

g
< 2ty (llg (w) = g )3 ) +2Lo < 2Csz, Jull}; +2Lo,

hence for Ly := 2 (Csr, + Lo)

émm@@mwazéﬁmwaMmmas%Q+AMMQ

= Ly (1+ ol -
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Chapter 3. Application to Examples

(iv) If B is assumed to be Lipschitz from Hé’Q (A) = Ly (U; L? (A;R)) with respect to
|-l restricted to V' as in [BLZ11, Example 4.3] or [LR10, Example 3.2/, then B
fulfills (SL3).

Here in our examples, also condition (SLj) has been weakened in the same way con-

¢
trary to [BLZ11, Example 4.3] and we allow [, (fA lg (v,z)|2 d§) m (dz) also to be
bounded by another term.

It is stated in [BLZ11, Remark 4.4 (3)] that one can weaken (SLS3) even to
1B (v1) - B (w)|2, < / IV (01— va)[? dz + Csy (1 +/ Vo’ dx) / o1 — val? dx
A A A

— flor = v} + sz (14 o} ) llox = ally

and by a similiar argument as in (ii) one can get
2 T 2 2
1B @3, <L (1+ ol + llel)

for an L > 0. But this condition must be connected to a further assumption on B,
e.g. in the coercivity condition (A3) in the following examples, we can handle L ||UH%/
only if L < 1, because Lemma 3.1.2 provides —1 - Hv||%/ Since we need that 0 > 0,
we would need that 1 — L > 0.

Another problem would be the appearing of the |vi — U2H%/——term in the local mono-
tonicity condition (A2), which we cannot handle there, since o only affects the second
variable vy. A solution is to substitute ||vy — 'UQ”%/ with ||v2H%/, but this case is already
covered by our condition (SL3).

3.1.2 Lemma. (i) Suppose (SL1) holds and let d € {1;2;3}. There exists a constant
C1 > 0 such that for all u,v,w € V = H&’Z (A,R) we have

/A u [Vo] [w] d€ < Ca lully Jolly llwlly -

(i) Suppose (SL1) holds. If d € {1;2}, then there exists a constant Co > 0 such that for
all u,v eV

2y Ay (u) = Ag (01— v)y, < = Ju— o} +Ca (14 old ) flu— vl

(i4i) Let d = 3 and b; € L (A) + L™ (A) for 1 < i < d. Then there evists a constant
Cs3 > 0 such that for all u,v € V we have
2y (Ap (u) = Ay (v) ,u =)y < = [lu = olf{ + Ca [lu— o5
Proof. This proof is a slightly modification from [LR14].
Part (i): By Holder’s inequality for ¢ = 2 = ¢’ we have

[ tul Vol ol dg < ol uwllzzgn (3.12)
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3.1. Semilinear stochastic equations

So it is still to show that [[uwl| 2y < C1 ||ully [[wl]y for a constant C1 > 0.
Let d = 1. Then by Theorem F.1 (i) and Proposition F.3 there exist constants Co vy, Coo v >
0 such that V < L?*(A) and V < L* (A) respectively. Hence with Cy := CoyCoo v we
get

ol gy < lulleay 0l 2ay < Co ey ol

Let d = 2. By Theorem F.1 (i) there exists a constant Cy v > 0 such that V < L*(A).
Then for C; := C4,V and Holder’s inequality with ¢ = 2 = ¢/

Holder
luwllpoay < llullpagay lwllzaay < Culllly lwlly -

Let d = 3. There exist constants Cg 1 > 0, C3y > 0 such that V — LS(A) and V —
L3 (A) respectively by Theorem F.1 (i), since 1 < k < d2—d2 6 for k € {3,6}. For

C1 := C,yCsy and by Holder’s inequality with ¢ = 3, ¢/ = 5 we get

Holder
luvllpaay < Nullpsay lwllzsay < Crllully [[wlly -
Part (ii): Let u,v € V. Integration by parts gives ..(A(u—v),u—v)y, = —|lu— v||%/
For i € {1,...,d} let F;,G;: R — R such that F; (0) = 0 = G;(0) and D;F; = f;,

D;G; = F;. Using that u = 0 = v on JA since u,v € H5’2 (A) =V, we have G; (u —v) =0
on JA and we get by the chainrule, integration by parts and Gauss’ divergence theorem

v ((f (u=v),Vu — v)ga ,u —v),, Z/fzu—v i (u—v) (u—v) d¢

C’ha_in— . . Int by . Gchss
= Z/D (u—v)) (u—w0) p(ms Z/D (u—wv)) d¢ 0.

rule
(3.1.3)
This leads to
o (4 (), V) go — (F (0), Volga 1 — v)y,
— (U (), V (1= 0)) s + (F () = £ (0), Volga = v}y, (3.1.4)

=" ((f(u) = fu—v),V(u—2))ga+ (f (u) = f(v),VO)pa,u—v)

Let d = 1. By Proposition .3 there exists a constant Cw v > 0 for the continuous em-
bedding V' < L (A). Together with the Lipschitz continuity of f and Holder’s inequality
for ¢ = 2 = ¢/ the right hand side of (3.1.4) is bounded by

Lf/A]v||V(u—v)||u—v| d£+Lf/A|u—v||Vv||u—v| de.

<Ly lvllo llu =vlly llu = vllg + Ly llu = vl J0lly [lv = vl
SLCoov [lolly lu = vlly lu = vl g + LyCoov lu = vlly [[v]ly [[u = ol 5

<lu=vlly llu=vlg - Cr (L +vlly)

65



Chapter 3. Application to Examples

where C; := 2L;Cuy -
Let d = 2 and f1, fo bounded. With Holder’s inequality for ¢ = 2 = ¢’ and Lemma F.5 (i)
the right hand side of (3.1.4) can be estimated by

2
[flloo 1w = vlly llu = vl + Ly wlly llu = vllzaa
Sl 1w = vlly llu = vl + 2Ly vlly [lu = vlly flu = ol
<l =vlly llu=vlg - C2 (L +vlly)

where Cy := || f||, +2Ly.
Now let d € {1;2}. Then by the estimates above, Young’s inequality for ¢ = 2 = ¢/ and

Lemma B.3 we get
2y (A (u) = Ap (0),u—v)yy =2 (A (u—=v) + (f (v), Vu)ga — (f (v), VO)pa , u —v)y,
<= 2llu—vlfy +2- Ju—ofly - [lu— vl - Ca (L + Jlolly)
Young

1 _
< —Nu—nv|? +=-221.C u—v2(1+ 1)2>.
< ol + 2 Callu— ol (1+ ol

Therefore the claim follows by choosing Cy = Cj.
Part (iii): Let u,v € V and let C3 > 0 the constant from Lemma F.6 in case ¢ = 3. Then

by integrating by parts and using that A is linear, we get

(A (1= v)) (u—v) d£+2/ (b, V (11— 0))gat s 1 — ) dl€

2y (4 (0) — 4 () u— )y =2 [ A

A

<—2/Arv<u—v>uv<u—v>|df+2/A\brv<u—v>uu—v\ a¢

F6 1
2 2 2 2 2
<~ 2ol + 2 (5 = ol + Ca = vl ) = = = ol + Cau — ol

3.1.1. Examples

3.1.3 Example (d = 1). Suppose (SL1) to (SL4) hold ford = 1,7 =3, s = 2 and n < 7.
Then for any initial value Xy € L? (Q,]—"g, pP;L? (A,]R)), where p > 6, equation (3.1.1) with
operator A = Ay y, has a solution X = (X);¢(o ) which fulfills

sup B [[|X (0)I}] < oc.
t€[0,T

For n = 0 this solution is unique and we have

E | sup HX@)H%] < 00,

te[0,7)
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3.1. Semilinear stochastic equations

Proof. This proof is divided into claims to verify conditions (A1)—(A4) and (B1)—(B3) and
to show that A: V' — V* for A = Ay y,. Finally, we will use these claims to show that
there exists a solution and that this solution is unique. In the situation of Theorem 2.2.1
we will verify the needed conditions for

a=2, (=4, Y=
0=1, K:=Cy C:=Cp

and F := Cy, o0 (v) := Cy (1 + ||’UH%/) (1 + ||v||z}{) for v € V, where Cyp > 0 is a constant
big enough. In the following proof we will see how big Cj has to be.
. -1
Claim: v <0222 [(8+2) (B+1) + 251 (28 +1)] .
Since 8 = 1 and 8 = 4 we calculate

3 1

pBt2 __ 3
2 6-54+9-25 106

: [(ﬁ +2)(B+1)+ 20T (28 + 1)} -

Claim: Af7f0 V=V
Let u,v € V, then by (SL2) with r =3

vt o)1 < [ 1o 1ol da
<Cs [ (1+1uP) o] do = ; :
<Cgp +|ul?) |v] dez = Csp, || + |u]” |v| ) dz < Cgp, |v| 4 sup |v]| - sup |u| - [u]” | dx
A A A A A
2
=Cs, (10l gay + 1ol gy el ooy 1l
<Cs1 (Crv ol + C v lelly lluly el
<Clolly (1+ lully )

where C1y is the constant from the continuous embedding V' = H5’2 (A) < LY(A) (cf.
Theorem F.1), Cs v > 0 the constant from the embedding V' < L* (A) (cf. Proposition

F.3) and C =Cgy (CLV + Cgo,V)' Furthermore we have

|y (A, v)y | < lully [lolly

by Lemma A.3. By Theorem F.1 (i) we have V — L?(A) with constant Coy > 0 and
by Proposition F.3 V' < L (A) with constant Csyy > 0. Since f = f; is Lipschitz by
condition (SL1), with C' = |f (0)|- Ca,y 4+ Ly - Cso,v we conclude by Holder’s inquality and
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Lemma B.3

(SL1)
|w<<f(u),Vu>R7v>v\</A|f(U)!|Vu\ [ d€ < /A(If(O)HLf [ul) [Vul[v] d¢

older
< [f O ully 1ol p2eay + Ly [[olloo Nlly lull g
<[f O llully - Coy l[vlly + Ly - Coo v [[0lly lully (14 [Jull )

A A 2
< Cllully llvlly + Cllolly llully (14 [lullz)
B

3

.‘ — —_ 2
< Clluly Iolly +2C ol llully (1+ el

Hence we have
[yt go (), )y | < ully Wolly + € Qo (14 Dl el )
+2C (lully Iolly + ey Tully (1+ ullf,))
= |lvlly, (é + [lully (1 140+ (é + 2(7) ||u||§{)) . (3.1.5)

and we conclude Ay ¢, (u) € V*.
Claim: (A1) holds.
Let u,v,w € V and A € R with |A\| < 1. We have to show

0= )l\lg(lj (V* (Af.fo (u+Av),w)y, — o (Ap g (u) aw>v) :

:/l\iir(l)</A((A(u—l—)\v)+<f(u—|—)\v),V(u+>\v)>R+fo(u+>\v),w)

~ (Bt (7 (1) Vg + fo(0) ) ) ).

Since A is linear, fp is assumed to be continuous from condition (SL2) and f is continuous,
too (since it is assumed to be Lipschitz in condition (SL1)), we have convergence to zero
for the integrands d{-a.e. The claim then follows by Lebesgue’s dominated convergence
theorem, because by |A| < 1 and conditions (SL1) and (SL2) we have

(A (u+ )+ (f (u+ M),V (u+ ) + fo(u+ Iv),w)
= (Au+ NAv,w) + ((f (u+ M),V (u+ ) ,w) + (fo (u+ ), w)
< (@) + (Do) + (1f (u M) [Vl )+ (5 (- 20)] (901 10) + 1o (s +-20)] o
5 )+ (0w (O] Ly (] o)
4 O+ Lyl + o) 901 ol + s (1 + (ful + [o1)) ] (310

This term dominates the integrands and it remains to show that it is integrable.

/A ] d€ = w1 a) < Cry lolly < oo,
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3.1. Semilinear stochastic equations

because V < L' (A) by Theorem F.1 (i) with constant Cy; > 0. With Holder’s inequality
for ¢ =2 = ¢’ we get

Holder
/A (D, w) dE = — /A (Vau, Vo) de S lully lolly] < oo

By Lemma 3.1.2 (i) we have

/A o] [Vl o] dé < G [fully o]y lfwlly < oo.

Finally, since r = 3, by Lemma B.3, Holder’s inequality for ¢ = 2 = ¢’ and Theorem F.1
(i)
N B.3 3 3 Hoélder 3 3
(o) ] dg < | (lul® + Jof”) ol g TS 4l gy (lelZoqy + TelZo)

FL) 3 3 3
< 4oy wly Gy (Il + o))

< 00,

where Ca > 0 and Cg v are the constants from the embeddings V < L% (A) and V —
L5 (A) respectively. For completeness we also note

older

H
/A Vul fw] de < ully ol a < Cow lully llwly < oo.

Claim: (A2) holds.
By (SL2) we have for all u,v € H&’Z (A;R)

2w<fo<u>—fo<v>,u—v>v:2/A<fo<u>—fo<v>><u—v> a¢

(SL2)

< CSL/A(H\UP)(u—v)? d¢ < CSL/A <1+s%p |v|5> (u—v)? d¢

=CsL, (1 + ||UHSL°°(A)) llu— UH%Q(A) :

We have ([0 joc(n) < Coo,v [[v]ly, where Coq vy > 0 is the constant from the continuous
embedding V = Hé’z (A) < L*° (A). Therefore, since s = 2,

2y (o (w) = fo (v) ,u = v}y < Cor, (1+ Cog 0l ) llu = vl
By Lemma 3.1.2 (ii) we have for all u,v € V
2 (Af(u) — A — ), <Oy (1 2 — )2
velAy (u) = Ay (V) ,u—v)y, <Gy (14 [Jolly ) flu— vl -

Now, by (SL3), for all u,v € V

1B () = B)I}, < Cst (1+ [ 1o ds) [ = of? do = Csi (14 ol ) hu = ol

69



Chapter 3. Application to Examples

and by (SL4)

[l =g @)l m@) < [ [ 19 - dgm @)
<Cou (14 [ 190P ag) [Ju-oP ag=ca (14 HUHQV) fu— vl

Altogether we see that (A2) is fulfilled:

2y (Apgo (w) = Ag g (v) ,u =)y + 1B (u) = B ()llz, + /Z lg (u, 2) = g (v, 2) | m (d2)

<(Co+Cs1 B+ Coc)) (14 [0l ) llu = vl

<o () lu vl < (Fy + 0 (v)) [lu =%,

for all ¢t € [0, 7] since F' is non-negative and Cy > Cs 4+ Csr, (3 + Coo,v)-
Claim: (A3) holds.
Let w € V. Then by Lemma 3.1.2 (ii)

2 {Ap () )y +llull? =24 (Ag (u) = Ay (0) 1w — 0y, + [ — O]
<G July < Gy (1+|luli;)

and we have by 3.1.1 (ii)
1B )3, < La (1+ Jully)
Since fo (0) = 0 we have by (SL2)

2y (fo (u) s u)y =2y (fo(u) = fo(0),u—0)y

gchL/ w?de < 20 Jullfy < 205, (14 ully).
A
Summarizing yields to

2 (Ay gy (W) )y, + 1B ()|, + [lull

<(Co+ Ly +20sz) (1+lully) = Fi+ K [lull3

forall t € [O,T], where F':=Cy =: K and Cy > Cy + Ly + 2Cyy..
Claim: (A4) holds.
Let u € V. For « = 2 and 8 = 4 we calculate for the operator norm of Ay by (3.1.5)
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3.1. Semilinear stochastic equations

N ~ \N2
with € = (20 " 60) and Lemma B.3

2
14510 (W)llye = sup | (A g (1) ,0) ]

lolly =1
Pt uly (1440 + (C+20) )
<C (1Tl (1))
<0 (1l (1 i) ) € 20 (1 20l (14 )
<AC (14 fully + ulf flual)
< (B K fulff) (1+ )
where F:= Cy =: K and Cp > 4C.

Claim: (B1) holds.
By Remark 3.1.1 (ii) and (iii) we have for all u € V

1B @I, + [ No w2l m (@) < (s + L) (1+ )
<C (1+ o+l

for all ¢t € [0,T] where C := Cy =: F; and Cy > L + L.
Claim: (B2) holds.
Let u € V. Since ( =3 = g = % we get by (SL4)

[ ot 2l m (/UMude m (dz)
<Cs1 <1+ ([ 1 d&) >+n< NG d§>c—1 ([ rvot ac) .

+2 2(¢—-1 2
=Cisp (1+ ™) +nlolE " ol
B+2
5 2
<O (145 41l ) 4 ol Dol

for all t € [0,T], where C := Cp =: F and Cy > Cgy.
Claim: (B3) holds.
Since a« =2, f =4 and C := Cy we have foru e V

o (w) = Co (1+ ull}) (1+Ilullfy) = € (14 Jullg) (1 + uly)

71
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Claim: (3.1.1) with A = Ay 4, has a solution.
With the previous claims we can apply Theorem 2.2.1 (i) and get a solution X' = (X),c10 7)-
Furthermore we have
sup B [[|X (0)I}] < oc.
te[0,7
Claim: If n = 0, then the solution is unique.
Suppose n = v = 0, then we obtain uniqueness by Theorem 2.2.1 (ii) and

E | sup [IX ()l

te[0,7)

< Q.

O

3.1.4 Example (d = 2). Suppose (SL1) to (SL4) hold for d = 2, 1 < r < 3, s = 2
1 .
i fr<
and for n < {407 _ TS
K { [4r + 227H1] b else.
any p > max {2r;4} and initial value X, € LP (Q,}"O,P; L? (A,R)) equation (3.1.1) with
operator A = Ay y, has a solution X = (X¢),c(0 ) which fulfills

2
" For i € {1,2} let f; be bounded. Then for

sup E [I1X (1) 5] < .
te(0,7)

If n = 0, then this solution is unique and we have

E

wpwwm““1<w
t€[0,T]

Proof. The structure of this proof is identical to the proof of Example 3.1.3. We will verify
Theorem 2.2.1 for

a=2, fB=max{2(r—1);2}, vy=n
0:1, K::CO, CZ:CQ

and F:= Cy, 0 (v) = Cy (1 + Hv||%,> (1 + HvH%), where the constant Cj > 0 is big enough,

which we will see in the following proof.

. -1
Claim: v < 0% [(B+2)(B+1)+20FL (28 +1)] .
With Remark 2.2.2 we see that the claim follows, since

[\CRIESaY

y=n< % [(max {2r;4} + 2max{2r;4}>} . [(5 +2)+ 2/5’+2] -

Claim: Af g, :V — V*.

Note that since p = 2 = d we have V' — L% (A) for all ¢ > 1 by Theorem F.1 (i). Let
u,v € V and € € (0,1). Then by (SL2) since fy(0) = 0 and Holder’s inequality with
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3.1. Semilinear stochastic equations

— ! __ e+1
g=c+1,¢ =~

|y (o () vy | < Csi /A 1+ Juf") o] de

1
r e+1 e+1
<Cs1 (nvuLl(A) 4 ( [t dx) ( 1w

st (ollsgny + Ialrconn ol 251, )

)’

<Cst (Crv llolly + Cesn y oy ulljren )

where the constants C1y, Cet1 ,> 0 are from the continuous embeddings V' < L' (A)

T

and V <—> L (A). Since r < 3, we can choose € so small that ¢ < 2%1 This implies
r<l+; +1 By Hoélder’s inequality and with A € (0,1) arbitrary we get

1
e =
el ey = ( /A D) [y 1=V d§>

1 1
q(e+1) / (e
< ( / e e d§) h < /A \uy<1—x>r<e+1)q>““>

= el Beacergay Tl Sy

Therefore, by choosing A\ = % and ¢ = m, qd = 0‘*1)2% we get

1 -1
el ey < lull ooy lalatay < o llully ™,

where we used Theorem F.1 (i) in the last step. Hence

[y o () )y | < Clolly (14 llully Tl )
where C' = Cgy, - max {CLV; Cﬂ’chvv}. By Lemma A.3 we have

|y (Au, v)y | < lully (o]l -

Since f is bounded, we get with Holder’s inequality for ¢ = 2 = ¢/, Lemma 3.1.2 (i) and
the continuous embedding V' « L2 (A) with constant Cyy > 0

e ((F (), V) o)y | < / 1F ()] [Vl o] de
A
older
1Al ey Nl 2

3.1.2 (4)
< Covfllo lully flolly -
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Chapter 3. Application to Examples

Hence by Lemma A.2 and B.3

~ -1
| velAg g (w),v)y | < Clolly (1 + llully Nl ) + [Jully [Jvlly
+ Cov || flloo ully 0]y,

<Cllolly (1+ lully + lally el (3.L8)

where C' =14 C 4 (1 4 Cov || f]l,.) and we conclude Ay ¢, (u) € V*.

Claim: (A1) holds.

Let u,v,w € V, A € R with |A\] < 1. As in the proof of condition (A1) in Example 3.1.3
we only have to show that (3.1.6) is integrable. To do this we note that since we have
V — L2 (A) for all ¢ > 1 by Theorem F.1 (i), all the embeddings used there also work in
case d = 2, except for

[ Gl + byl e
A

By Holder’s inequality with ¢ = 2 = ¢/ we have
| tullwl 46 < lullaqqy Nelzzqay < G Nully Tl < oo,

where Cy v > 0 is the constant from the embedding V' — L? (A). Again, Holder’s inequal-
ity with ¢ = 1 and ¢/ =7 + 1 we get

T 1
1 ey
/A o[ Jw] d€ < ( /A i dé) ( /A jw["* df) = ollzrer(a) Il preaa)

<ttt Tolly

where Cyy1y > 0 is the constant from the continuous embedding V' — L™ (A) by
Theorem F.1 (i).

Claim: (A2) holds.

Let u,v € V. By (SL2) with s = 2, Holder’s inequality with ¢ = 2, Lemma F.5 (i) and
Young’s inequality we get

v (fo(u) — fo(v),u—0v), < C’SL/A(l + |v]*) (u — U)2 dz

SC’SL]u—v]%—i—CSL/ ]v|2|u—v|2 dx
A

1 1
Holder 2 2
< C'SLHu—vHiI—i-CSL </ \0\2'2 dx) (/ ]u—fu!m dx)
A A

2 2 2
=Csi llu = vl + Csi vl 7agay llu = vllzaca)

F5(3) )
< Csillu—vlly +4Cse [Jully ull g [[lu = vll g llv = vl

oung 2 2 2 2 1 2
< Cspllu—ollf +8C3, ully llullz lu —vlIF + 3 llu =l
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3.1. Semilinear stochastic equations

Now by 3.1.2 (ii), since fi, fo are bounded and d = 2,

3.1.2 (i7) 9 9
2y (Ap () = A () u—v)y < Co (T4l ) lu— vl — u—wvl} .

y (SL3) we get

1B ()= B, < Csi [ fu=oi? do = Cp (14 ol ) hu = ol

and by (SL4)

[ Nl = g w2y m (@) < s [ Ju— ol do = s (1+ ol ) = o1y

Combining these results leads to (A2):

2 2

2y (Ap gy (W) = Ag gy () ,u—v)y + 1B () = B3, + / lg (u,2) — g (v, 2)|[% m (d2)
< flu—oll} = llu = I} + (8CZp lully ully + (2Cs2 + Co) ully ) llu = vl

A 2 2 2 2 2

C (Il el + Nl + lwllz +1) e = wll

A 2 2 9 A2 2 B 2
=C (1 lully) (14 Dul3) = ol < Co (1+lulld) (1+ lulf) I — ol
=0 (v) [lu— o[}
with € := max {Cy + 4Cs;8C2, } and Cp > 2571C.
Claim: (A3) holds.
Let w € V. Lemma 3.1.2 (ii) gives

2 2 2
2y (g () w)y < =l + Ca llullfy = = Jull§ + Ca lull

By Remark 3.1.1 (ii) we have

2 2 2
1B @), < Lo (1+ llull};) = Lo + L |lull3

Therefore, since fy (0) = 0, with condition (SL2)

2y (Apfo (u)  w)y + (1B (u)l|z, + 0llulf < (C2+ L) HuIH+2CSL/Au2d€+LB
<Lp+ (Co+ Lp +2Csr) ||lul}y < B+ K |Jul %

for all t € [0,T], where Cy > Cy + Lp + 2Cgy,. (Remember K = Cy, F = Cy.)
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Chapter 3. Application to Examples

Claim: (A4) holds.
Let uw € V. For o = 2, the operator norm of Ay ¢, can be estimated by (3.1.8) and Lemma
B.3

2

”Af,fo (U)Hf = sup | Vo <Af,f0 (u) aU>V‘
veV,

olly=1

(3.1.8) , _ —1\\2 B3 _ _ r—1\2
< (C (1 lully + ey el ) < 20 <1+Hu\2v(1+HuHH1)>

B.3 _ _ A2 _ B _
a0 (1l (1 1l ™)) € 002 (1427l (14 )

<Fy+ K lull + K lull ullf + Bl = (B + Kol (1+ 1ol

5 _
for all ¢t € [0,T], where F':= Cy =: K and Cj > 22-0 T2,
Claim: (B1) holds.
This is exactely the same proof as in Example 3.1.3.
Claim: (B2) holds.
. . . . _ max{2r;4} _ max{2(r—1);2}+2 _ 42
This follows from (3.1.7), since ¢ = max {2;7r} = == {2 b o max{ 5 M2 ==
Claim: (B3) holds.
The definition of p already fulfills (B3).
Claim: (3.1.1) with A = A 4, has a solution.
Theorem 2.2.1 (i) applied to (3.1.1) with A = Ay s, gives us a solution X = (X¢),¢(o ) and
we have

sup E [[|X (1)l < o,
t€[0,T]
since 8 + 2 = max {2r;4}.
Claim: If n = 0, then the solution is unique.
Suppose = v = 0, then Theorem 2.2.1 (ii) provides the uniqueness of the solution and
we get

x{2r;4
sup || X (¢t

t€[0,T]

E

< 0.

O

3.1.5 Example (d = 3). Suppose (SL2) to (SL4) hold for d = 3, r = I, s = % and
n<l[2(2+ 32\3/5)}71. For i € {1,2,3} let b; € L% (A) + L> (A). Then for any p > 10
and initial value Xy € LP (Q,}'O,P; L? (A,R)) equation (3.1.1) with operator A = Ay y,

has a solution X = (X¢),¢[, ) which fulfills

16
sup B [IX (01| <o
t€[0,T]
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3.1. Semilinear stochastic equations

If n = 0, then this solution is unique and we have

16
E [ sup rxwr;] < oo.
te[0,7]

Proof. The structure of this proof is identical to the proof of Example 3.1.3, but with
A = Ay s, We will verify Theorem 2.2.1 for

10
3 )
=1, K:=Cy, C:=CC)

a=2 f= Y=

10
and F := Cp, o(v) = Cp (1 + HvH%) (1 + \v”é), where the constant Cy > 0 is big

enough, which we will see in the following proof.

Claim: v < 6252 [(8+2) (B+1) + 2771 (28 +1)] .
~v = 1 has been chosen in a way such that the claim follows from Remark 2.2.2, since

16 3 1oy 5i2] !
y=n< |23 +32V2 :§ﬁﬁ+m+2 } .
Claim: Az : V — V*.
Let u,v € V. Condition (SL2) with Holder’s inequality for ¢ = 2% (=9),¢= d2—d (=6)

d+2
gives

|y (fo (), 0)y | < Csi /A 1+ Jul") o] de

. Holder S q q q
—Cst (1ol + /A uf o] dz ) "< Cop (ol n) + /A (lul") /A o

=Cs1 <HU||L1(A) + ”“HL%(A) HUHLflM2(f\)> '

=
[
SN—

By the continuous Sobolev embedding Hé’2 (A) < L9(A) for all 1 < ¢ < ;lfpp =6
from Theorem F.1 (i) there exist constants Cgy > 0 and Cyy > 0 such that we have
HU”L%(A) < Cov |lvlly and [Jo] 1) < Cryv [lvlly. Hence, for €' = max {Cyv;Cv; 1}
we have

U)oyl < Con (14l g, Y ol

Let A=2¢€(0,1) and g= $2 =5, ¢ = &2 = 2. We infer

pX 1—X
ull oy < Nl e Il S
(A) A) L
—ull 2g el T = el 2 el
parz(ay LRI g ra-z)

4 4
= llull o (ay lull 22 (ay < Cov llully [l
(4) (4)
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Chapter 3. Application to Examples

where Cgy > 0 is the constant from the continuous embedding H&’Z (A) < LS(A) as

above and since r = % Hence

- 4
[ (o () )| < GO (1 T lully uuu,z) ol -
By Lemma A.3 we have

|V*<Aua“>v| < ||U||v HUHV

Now by Lemma F.6 there exists a constant Cy = Cy (JA|) > 0 such that

| (b, Vg, 0}y | < /A b |Vul o] dé

6 2 5 \2 2 2 \2
< (Il + Calullz)* (el + Caliolly)

F.1(i 1 1
< (@4 acdy) uly) ((1+CiC3v)? i)

= (14 CiCy) uly ol

—
=

where Oy > 0 is the constant from the continuous embedding V — L? (A) = H. Alto-
gether we have

[y (Ao (W), v)y | < T ye{Au,v)y |+ [ (B Vi) ga )y | + |y (fo (), v) v |
[olly

. 1
<l Iolly + (1 + C1C23) lully Tolly + Cs2C? (1 T lally el H)
- 4
~ ol ((2 1 G2y Jully + CsiC? (1 T luly Jul H))
_ 4
<Clolly (HUIIV T lally fullf, + 1) (3.1.9)

with €' = Cg,C? + C4CQ27V + 2 and we see that Ay 5, (u) € V*.

Claim: (A1) holds.

Let u,v,w € V and A € R with |\| < 1. We have to show that
0= )1\% (V* <Ab7fo (u+ Av) 7w>v Ty <Ab,fo (u) 7w>v)

= tim ([ (A @+ 20+ 0.7 (0t Mo + o A0)

— (Au+ (b, Vu)g + fo (u) ,w)) d{).

By the definition of Ay, we see that Ay is linear. Moreover, fj is assumed to be continuous
in condition (SL2). So we have d¢-a.e. convergence to zero for the integrands. The claim
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3.1. Semilinear stochastic equations

then follows by Lebesgue’s dominated convergence theorem. Since |A| < 1 and r = % =1
we have with Lemma B.3

(A(u+Av)+ (b, V (u+ Av))g + fo(u+ Av),w)
(Au, w) + X (Av,w) + ((b, Vuyga , w) + A ((b, VU)ga , w) + (fo (u+ Av), w)
< (Au, w) + (Av,w) + [b] [Vu| |w| + 6] |[Vo| |w] + | fo (u+ )| |w]

(SL2)
< (A, w) + (Ao, w) + (0] [Vul [w] + [b] [Vo] [w] + Csp (14 (Jul + [o])") o]
N
< (A, w) + (Ao, w) + [b] [Vul jw] + 0] Vo] o] + Csp (1423 ([l + o] o]

w

and this term dominates the integrands. It is only left to show that the term in the last
row is integrable. Integration by parts and Hoélder’s inequality with ¢ = 2 = ¢’ gives

/ (Au,w) de = — / (Vai, Vo) d < [lully [o]ly] < oo.
A A

Lemma F.6 delivers for a constant Cy > 0

1

1 1
J W9l de < (ol + Calwliy)* (all + Ca )’
1 1
< ((@+aGy) wl})® ((L+CCy) fully)®
= (14 CuC3y) llwlly ully < oo,

where O3,y is the constant from the continuous embedding V < L? (A) = H. Let C1y > 0
the constant from the embedding V < L' (A), then

/A ] d€ = w1 ) < C1 llwlly < o0

and for the last term we calculate

[ttt g ™27 ([ 1ur a€)” ([ ol ) =l g
Au’ jwl d§ < A‘“’ £ Aw 3 _UL%(A)U)H

7
3

7
< CoyCy  Jullf ol < oo,
37

where C14 {, > 0 comes from the embedding V' — L5 (A). This embedding exists by
3 I
Theorem F.1 (i) since
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Chapter 3. Application to Examples

Claim: (A2) holds.

Let u,v € V. By (SL2) with s = %, Holder’s inequality with ¢ = 2 and Lemma F.5 (ii) we
get

velo (W) = fo @) u=v)y < Csi [ (L4 l") (u =) do
A

4
<Csy u— vl +CSL/ ol u — of? dz
A

Holder % 9.9 %
< Cgp HU—UHH+05L (/ |v\3 dx) (/ |u—v| d;c>
A

_ _ 2 3 — 2
=Csr ||u UHH+CSL||UHL§(A)”U vl 7aa)

F.5 (i) 9 4 1 3
< Cspllu=vllyy + Cop el Ty - 2v2 lu— ol Ju =l

3 3
3\4 4 1 2\ 4 3
:CSL!\u—v!\§1+<(2> 22 Con ol o=l ((3) Hu—vua>

Now by Young’s inequality with ¢ = %, qd =4

3 3
3\ 1 1 1 2\ 1 3
((2> 22 Cor ol ||u—v||?{) ((3) ||u—v||a)
3 (/2\1 s NN /3 s 0\’
<2 z _ - e . _
S((G) ra-ut) +3((5) 2vz-coutoldy , tu-ol

16
= Hu — ||} + 54C%y, o] 3%( N lu = vlf -

16

Let us estimate ||v|| % " . We repeat that s = 3 and set ¢ =6, ¢’ = 2 and A = - € (0,1).
Ls

Then by Hoélder’s inequality

4\ 4(1-XN)s
ol 5, = I0NER < oS o0

) 10
= [Jvll7e [lvll 2 -

dp

Since we have d = 3, we can use the well known Sobolev embedding Hé’p (A) = Li—» (A).
So, for p = 2 there exists a constant Cp 17 such that

2 2
Iollzs < G llvlly -

Hence
1

v (fo (w) = fo (v),u —v)y < 5 lu = ||} + 54C5,CE v vll3, ||UHH lu —l|7 + Csz lu—v|F
1 4 2 2 2 2
2IIU—UIIV Csr +54Cs, Co vy vl lvll 7 ) lw —vll3 -
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3.1. Semilinear stochastic equations

Lemma 3.1.2 (iii) gives
2y (Ap (u) = Ap (v) 1= v}y < = |lu—v[[§ + C Jlu — o]l

By (SL3) we have

|B (u) = B (v), < Cs <1+/A!Vv|2 d&)/A|u—v|2 dg = Cor, (1+ oI} ) llu = ol

and by (SL4)

[ Nl .2) =g w2 m @) < Osi [ Ju—of* aé = Cou (14 o) u vl

Therefore

2y (0) = Augy (0) u= o)y 18 ) = BOIE, + [ lo(2) =g (0.l m (d2)
<l ol 4 = ol 4 Cs flu = 3y + 205 (14 Joll2) u— ol

+2 (o + 510K CRy ol ollF ) = ol
— (ot 20 (14 1oli) +2 (Con + 54C8. o ol ol ) ) o = ol
<o) u i}
with Gy > max { Cy +4Cs1;108 - C4, G2 |.

Claim: (A3) holds.
Let w € V. Condition (SL2) with fo (0) = 0 gives

2 v o () sy = 240 (o (1) — fo (0),u— 0)y < zc*SL/

w?d¢ < 205, (1 n Hu\@{) .
A

Then by Lemma 3.1.2 (iii) and Remark 3.1.1 (ii) we get

2y {Ap gy () w0y + 1B @), + ll} < Csllullly + (2Csz + L) (1+ ull}y)

<(Cs+20s5,+ 1) (14 uly) < B+ K Jlully

for all ¢t € [0,T], and with Cyp > C5 + 2Csy, + L.
Claim: (A4) holds.
Let u € V. With o = 2 we can calculate the operator norm of A g, (u) by (3.1.9) and
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Lemma B.3

2

o

1A 1, (W[5t = Sup |y (A g (W), 0) |

l[olly=1

(819) 4 B3 __, 1\ 2
e (HUHV + el el + 1) oo (14 (HUHV T llully HuH%)
Cuer (1 2 2 11ull3 ) < 462 (1 2 2 1lull? 5
< +{Jully + llully lullf ) < + llully + ully ellg + llullg;
and with Lemma A.2 and B.3 we get

_a _ 8
sy I <402 (141l ) (1+ )

A2 ) 5\1B3 o o ) 10
<acr (v ) (1 k) % i (L) (14 1)

<(F+ K ol) (1+ ol

ot

for all t € [0, 7], where Fy := Cp =: K, § = % and Cj > 21C2.
Claim: (B1) holds.

See the proof of (B1) in Example 3.1.3.

Claim: (B2) holds.

This follows from (3.1.7), since ¢ =8 = 1. 16 = B% .
Claim: (B3) holds.

By the definition of g, a;, § and C we have for all v € V

o(0) = Co (14 ol (1411 ) = 00+ 1ol (14 o)

Claim: (3.1.1) with A = Ay 4, has a solution.
Since all conditions are fulfilled, we can apply Theorem 2.2.1 to get a solution X =
(Xt)sepo,ry to (3.1.1) and by 2.2.1 (i) we have
16
sup B [IX (01| <o
t€[0,T]

Claim: If n = 0, then the solution is unique.
Suppose n = v = 0, then Theorem 2.2.1 (ii) is applicable and we obtain uniqueness and

16
E [ sup HX(t)nf;] < oo.
t€[0,T]
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3.2. Quasi-linear stochastic equations: p-Laplacian

3.1.6 Remark. [t is not necessary to claim n = 0 to get the uniqueness result in Fxamples
3.1.3, 3.1.4 and 3.1.5. A sufficient condition is 0 < n < I', where T" is the constant from
(2.2.1) (cf. page 17), i.e.

0 < [2 (QC%DG + 53)] ! , in Example 3.1.5,
S [IGC%DG + 4632 + 23—6] - , in Example 3.1.5,
and, in Example 3.1.4,

0<n< [12C5pc +26] » ifr <2,
2r [r? (12Chpg +8) +r (47 —4) =3-47] 7, else.
3.2. Quasi-linear stochastic equations: p-Laplacian

In this section let d € N with d > 3. Again, let A C R? be an open, bounded domain. Let
2 < p < 0co. We have the Gelfand triple

V= Hy?(A) C H:=L*(A) C Hy"P(A) = V*.
Consider the following equation:
d
aX (1) = (Z D; (ID:X (D2 DX (1) + o (X <t>>> dt + B (X (£)) dW (t)
i=1

3.2.1

+/f(X(t),z)u(dt,dz), (3.2.1)
Z
Xo

X (0) =
Suppose that there exist Cgr,7, s > 0 such that the following holds:
(QL1) fo: R — R is continuous, fy(0) =0 and fy satisfies for all z,y € R
[fo (@) < Cor (1 + |2["),
(fo (@) = fo (1)) (x — ) < Cor (L + ly*) [z —y|".
(QL2) B: Hy? (A;R) — Ly (U; L? (A;R)) satisfies for all vi,vs € Hy” (A;R)
IB (v1) — B (v2)ll7, < Cor <1 + /A Vs [P dx) /A|u1 — vp]” da.

(QL3) f: R x Z — R such that for all v,v,v9 € Hé’p (A;R) we have
/ / |f (v1,2) — f(vg,z)|2 dzm (dz) < Cor, (1 —I—/ |Vug|? da:) / lvg — U2|2 dz,
ZJA A A

/Z </A\f(v,z)|2 dx>C m (dz) < Cor, (1+ (/Am? dw>c>
+77</A|U\2 d§><-1 (/A|Vv|p ds>,
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Chapter 3. Application to Examples

2277 (2¢ +45) 7", ifd < p,

where ( >1and 0<n < _
¢ 7 {21_1’ (2{ + 44) 1, else.

We define the operators
Ay (u) = div (yvu|p—2 Vu) ,
Ap.fo (u) := Ap (u) + fo (u) .
3.2.1 Lemma. There exists a constant C; = C1 (p) > 0 such that for all u,v € V we have
v (Ap (u) — Ap (v) ,u —v)y, < =Crflu— vy
Proof. Let u,v € V. By Lemma C.4 we have
Vo <Ap (u) — AP (v),u— U>v
= / {1V @)~ Vu (@) = |Vo (@) Vo (@), Vu (@) = Vo (@) da
A

R4

C.

< - 2_(7’_2)/ |Vu(z) — Vo (z)P de = —C |lu — |},
A

where Cy = C} (p) = 2-#=2),
O

3.2.2 Remark. As in Remark 3.1.1 (i) and (iii) there exist constants Lp, Ly > 0 such
that for all v € V' we have

1B@)I7, < Zs (1+Ivl})
L 152 m@) < Ly (14 ol
Z

3.2.1. Examples

3.2.3 Example (d < p). Let d < p. Suppose conditions (QL1) to (QL3) hold for 1 < s < p,
r:=p—1and h := 2. Then for any initial value Xy € LP (Q, Fy, P; H), where p > 2(,
equation (3.2.1) has a solution X = (X¢),c(o ) and this solutions satisfies

sup B [|1X (1) < oo.
te[0,7

If n = 0, then this solution is unique and we have

E

swmwwﬂ<w.
te[0,7)
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3.2. Quasi-linear stochastic equations: p-Laplacian

Proof. Similarily to the proof of Example 3.1.3, this proof is divided into claims to verify
conditions (Al)-(A4) and (B1)-(B3) and to show that A, ¢ : V — V*. Finally, we will
use these claims to show that there exists a solution and that this solution is unique. We
will verify Theorem 2.2.1 for

a =Dp, ﬁ:2(<_1)7 =1
0=2C,, K :=(Cy, C :=Cy

and F := Cp, 0(v) :== Cy (14 |v|]},) for v € V, where C1 = Cy (p) = 227P > 0 is the
constant from Lemma 3.2.1 and Cy > 0 is big enough, which we will see in the following
proof. Let us note that 8 =2(¢ —1) > 0.

Claim: v < 0282 . [(B+2) (B +1) + 2+ (28 +1)]
Since

0
2

N=n<227P <2< +4<)_1 = [(,6'+ 2) + 25”]_1 ,

the assertion follows from Remark 2.2.2.
Claim: A, : V — V*.
Let u,v € V. By condition (QL1) with r =p — 1

v () o)yl < Cou [ (1-+ 1) o dg
<Car [ (1+ (suplal) ) bl de = Cor (1 + fulfmqn) ollrcn
A A
<Car (1+C20 Iullf™ ) el gay
where Coo v = Coo v (p,d, |A|) > 0 from Proposition F.3. With Cy v = Cy v (p,d,|A]) >0

we also have

[ollLray < Crv llolly -

Furthermore we have by the Cauchy-Schwarz inequality and Holder’s inequality
-2
‘V*<AP (u) ,v)v} < ‘/A <|Vu|p Vu, Vv>Rd dﬁ‘

</ )\WVHW‘ Vol dg:/ IVulP~! Vo] de
A A

. p=1 1
Heger VP V5T qe) " VolP de )" = [lulpt 3.2.2
< A| ul 3 A| vl” d¢ |y (vl - (3.2.2)

Hence
[y (Ao (@) 0)y | < (CorCuy + (14 CarCrvCLy ) Il ) vl (3:23)

and we conclude Ay, f (u) € V*.

85



Chapter 3. Application to Examples

Claim: (A1) holds.
Let w,v,w € V and A € R with |A\| < 1. We have to show

0= lin}) (V* (Ap 1o (u+ Av) ,w>v — (Ap, 1o () ,w)v)

= lim </A (<|V(u+)\v)|p_2V(u—|—)\v) + fo (u—I—)\v),Vw> — <|Vu|p_2 Vu+ fo (u),Vw>> d{) )

A—0

The integrands converge to 0 dé-a.s. since fy is continuous. (Al) follows by Lebesgue’s
monotone convergence theorem, because by the Cauchy-Schwarz inequality, condition
(QL1) with r = p — 1, Lemma B.3 and |A| < 1 we have

K\v (u+ M) P2V (u+ Xo) + fo (u+ Av) ,Vw>]
< (IV @@+ 20)P "+ 1fo (ut M) ) [Vl
< (\vu F AV + Cor (1 +u+ AUVH)) V|
B3 p—2 —1 —1 -1 -1 2—
<op (|wp AV oy (W + |l ) +Cor2 p) V|
<or2 (myp—1 + Vol 4+ Cop (|uyp—1 + |U|P—1) + CQL22—p) V|
and this term dominates the integrands. We still have to show that this term is integrable.
—1 Holder p—1
[ 1var vl dg T ! uly < o
and
—1
-1 1
[ 9l ag "€ ([ df) lwlly = 252, ol
- ~1
Coy llulf;
where Cp v = Cp v (p,d,|A]) > 0 is the constant from Poincaré’s inequality F.4.

Claim: (A2) holds.
Let u,v € V. Condition (QL1) with h = 2 gives us

ool () = fo (v) yu— v)y = /A (fo () — fo (u) (u— v) dé

[wlly < o0,

(QE)C 1 Nlu —v]? dé < Coyr (1 8 — ||
< Cor A( + [0]°) [u —v|" d§€ < Cqr (1 + [[vl[feony ) [lu = vl -

Now by Proposition F.3 we have ([0 oo (n) < Coo,v [|v]y,, Where Coo v = Coo v (d, p, [A]) >
0. Young’s inequality leads to

Car (14 ol ) lu = vl < Can (1+ Coo llolly) llu = ol

Young p—S .
< CQL(1+ ) V+||vup>||u—v||H

S
<Cor (1+p0;5v) <1+ p) (L4 o) = ol
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By Lemma 3.2.1 and conditions (QL2) and (QL3) we get

2y (Apgo (1) = Ap g (v) yu =)y, + | B (u) = B(v)||7, + /Z 1f (u,2) = f (v,2) 7 m (d2)

< =20 [Ju — |}, +3CqL (1—1—/ |Vol|P d:1:> / lu—v|? da
| S —— A A

<0

p—s s 2

S
<a0r (14222025 ) (14 2) (14 10l ol
< (Bt o) lu vy,

_p
for all t € [0, 71, since F' = Cj and Cy > 3Cqr, <1 + TC’(;‘S/) (1 + %)

Claim: (A3) holds.
Let v € V. Then by condition (QL1), since fy (0) =0,

o (0),0)y = vl (0) — fo (0) v — O)yr = / (o (0) — fo (0)) (v — 0) dé

QL)
< Cor / [of? dé = Cop [lull%

By Remark 3.2.2 and Lemma 3.2.1 we conclude
2 2 2
2y Ay gy (0), )y + 1B @)1, + 201 [0l < L (1+ ol ) +2Cau 1ol
<Lp + (Lp +2Cqu) |vll3 < Fy + K ||v]7,

for all ¢ € [0,T7, since F; = Cyp, K = Cy and Cy > Lp + 2Cqr.

Claim: (A4) holds.

Let u € V. By the definition of the norm of the operator A, ¢ (u): V — R, with oo = p
and with (3.2.3)

[

p—1
HAP,fo (u)Hf = sup ‘ v <Ap,f0 (u) 7”)\/}
veV,
llvlly=1

_Db_
< [CarCry + (14 CarCrv L ) Il ']
- =
<C (1l )"

p

where C = [max {C’QLC’LV; 1+ CQLCLVC&_%/H ?T Since 1% > 1 we have by Lemma
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B.3

Je T,
a—

p
s < (1 i)

B.3 ~
< 27P0C (1 + ||ullf)

14,50 ()]

< (B + K |lulp) (1+ llul;)

—_——
>1

for all ¢ € [0,7] with K := Cy =: F; and Cy > 2~ =D (.
Claim: (B1) holds.
Let uw € V. Then by Remark 3.2.2

1B )7, + /Z 1S (@, 215 m(d2) < 2(Lp + Ly) (1+ oll}) < C (1+ B+ ol )
for all ¢ € [0,T7, since F' is non-negative and C' := Cy > 2(Lp + Ly).

Claim: (B2) holds.
Let u € V. Since f =2 (¢ — 1) and a = p, we have together with condition (QL3)

L@l mas) = | ( NS df);(M)m(dZ)
[ ([1rear d5><m<dz>
ea (1+ ( INCS d£><> +n< INCS d£><_1 ( [ 1ver dé)

2 2(¢—1 +2
~Cau (1+ I0135) + Il F D olly, = Car (1+ I0I5) +n vl ol
B+2
N 2
<O (L4 FF 41015 + 0ol ol

for all t € [0, 7] since F := Cj is non-negative and C := Cy > Cqp..
Claim: (B3) holds.
This is clear by the definition of ¢ and a: For v € V we have

0 (v) = Co (L+ olfp) <€ (1+[lollp) (1+ ol
—_——
>1
Claim: (3.2.1) has a solution.
Theorem 2.2.1 gives us a solution X = (Xt)te[O,T]' With 2.2.1 (i) we have

sup E {||Xt||§ﬂ < 0.
te[0,T)
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3.2. Quasi-linear stochastic equations: p-Laplacian

Claim: If n = 0, then the solution is unique.
Suppose 7 =1 = 0. Then by 2.2.1 (ii) our solution is unique and we have

E

sup HXA\%] < 0.
te[0,7

O

3.2.4 Example (d > p). Let d > p. Suppose conditions (QL1) to (QL3) hold for 1 <

s < min{p(;__;); (p(fg)%zlpjp)}, r:=p—1and 2 < h < p. Then for any initial value

Xo € LP (9, Fo, P; H), where p > 2(, equation (3.2.1) has a solution X = (Xt)te[mT] and
this solutions satisfies

sup E [|X (1)]3] < oo,
te(0,7)

If n = 0, then this solution is unique and we have

E

sup HX(t)Hi?] < oc.
te[0,7

Proof. The structure of this proof is identical to the proof of Example 3.2.3. The conditions
of Theorem 2.2.1 will be verified for

a=p, p=2(C-1), v=n,
0=C, K:=C0Cy, C:=Cy

and F := Cp, 0(v) := Cy (1+ ||v|]},) for v € V, where C; = Cy (p) = 2*°7P > 0 is the
constant from Lemma 3.2.1. Cy > 0 is a constant big enough. We will see in the following
proof how big Cj has to be.

1

Claim: v <0222 [(8+2) (B+ 1) + 251 (28 +1)] .
Since

1 —1
y=n<27P (2 +4) = g (B+2)+27+7
the assertion follows from Remark 2.2.2.
Claim: A, :V — V™.

Let u,v € V. Condition (QL1) with »r = p — 1 gives us together with Holder’s inequality

forg=_%,¢ =p

[y {fo (u) o)y < Cor /A (14 ul") o] d

<Car (nv\m + [ o df)

Holder -
< Car (I0llray + lulFogay 10l ogay ) -
( ) (A)
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Let Cp v > 0 the constant from Poincaré’s inequality F.4 for V' < L? (A) and let C1y > 0
the constant from Theorem F.1 for V < L' (A) (since 0 < 1+d (1 — 7) holds true). Then

we can estimate
[+ 4o (), 00y | < Car (Illzagay + lullfniay ol o )
<Car (C2y +Crv) (1+ Il ol
Together with (3.2.2) we obtain
v Apgy () 0y | < Nl ol + Car (Coy + Crv) (14 ) vl
< (Car (C2y +Crv) +1) (1+ [l ol (3.2.4)

and we conclude Ay f (u) € V*.

Claim: (A2) holds.

By Theorem F.1 (i) we have V' < L% (A) continuously for all 1 < a < d—p because d > p.
We define

p(h—2) dp

“hp-2 T iy

Then A € (0,1) and py > 2, because 2 < h < p. Let py such that

Especially we have py € (2,pp). To see that h < py we refer to Lemma A.1. Now let
u,v € V. Condition (QL1) gives us with Holder’s inequality for ¢ =

— Dx
p>\ h’q_h

vmﬁuo—hwxu—wv=[}huo—m@»m—vwﬁ

(QL1)
< C’QL/ (14 |v]®) Ju—o|" d¢ = Cor [/ 1-|u—o) d£+/ |v]* |u — vl df]
A A A

Holder |: —h

<00 I =l

h
SCQLA [u = vl 1oaa) <1 + ”UHSLPS;JA*L(A) ’

py—h
where Cora = Cor (1 + |A| P ) By our choice of A and py we can apply Lemma F.7
and get

h h(1—=X\
lu = vl Fongay < lu = ol P e = vl 75y

Ah (I1=X
< Coly llu = vl 5 Il — o1}
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3.2. Quasi-linear stochastic equations: p-Laplacian

where Cj,, v > 0 is the constant from the continuous embedding V' < LP°. Let C7 > 0 the
constant from Lemma 3.2.1 and set

~ . ﬁ )\ph p— 2 p
Cy = )\hC < - C

Then by multiplying with 1 = C} - C| !
ve(fo(u) = fo(v),u—nv)y

_ — h(1—=X s
<[er—olit] - |65 Conacily o= vl (11, )]

Young ~ h(1=X s v
< Ciflu—vly, +C {HU - UHL(Q(A)) <1 * ”UHL;:—A’E(A)>]

where we used Young’s inequality with ¢ =

Zhs
I
I
o
=
o

~ —h /- =
(& 1CQL,ACZ§;2V) e
We calculate

—2
A
(Il =) = lhe = vl

Since 2 < h < p we have ;;;2 1 and Lemma B.3 gives

. B3 pa stp-2) p=2
(14100, )7 LB () = (L el
LPx=P(A) L”)\_h(A)

where

-2 —h -2
51:25'(19 )gp(p ) P _,
p—h p—2 p—h
by our condition on s, and
Px (h —2)p? pr A1 dp
SS9 ‘= S+ < . = = Po and
pr—h (p=2)(d—p) px—h d-p
s9>1- A >
px—h
—
>1

Therefore V' < L*? (A) by Theorem F.1 (i) with constant Cs, v > 0. Then Lemma A.2
with s1 < p and Lemma B.3 give

F.1(3) o
(14 0l3ag) < A+ Cop lvli)

A2
< (1 + Csz,V (1 + ”UHV)SI) < (1 + CSQ,V (1 + HUHV)p)
B

3
< (1427 oy (14 I0I))

<
< (1+2071Chv) (T4 |0]5) -
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Altogether by Lemma 3.2.1 and conditions (QL2) and (QL3) we get

2y (A gy (1) = Ap gy (0) u = 0hy + 1B () = B, + [ 1F (0,2) = £ (0.2l m (42
< =201 llu=vlff +2C1 [lu = vlf} + (14277 Coaiy) 2555 C flu = vllFaa) (1 + 0l})

+ Car (1+ [[911) llu = ol3aqny + Car (1+ 101) llu = vl3a(a)
= (14271 Cy) 250 4 2Cqr) (1+ [} 1w = olFagny

<e () |lu—vllfy < (B +2(0)) llu —vl3

for all ¢ € [0, 7], since F' is non-negative and Cy > (1 + 21’_1032,‘/) 25%'216’ +2Cqr.
Claim: (A3) holds.
Let v € V. Condition (QL1) with fy (0) = 0 gives

(o (8), 00y = vl (0) — fo (0) 0 — O)y = /A (fo (v) — fo (0)) (v — 0) dé

(QL1) . ,
<" Car [ Iof" d€ = Cou sy

As in the previous claim we set

p(h—2) dp
)\::7 = 2
hip-2° d—p>

Then A € (0,1) and let py such that

I 1-X A
DA 2 Po
By Holder’s inequality with ¢ = pf 2 and ¢’ = B* and Lemma F.7 we obtain for Cor a =
px—h
Car [A] »

W Holder pr=h h
CQLHUHLh(A) < CorlAl » HU”Lm(A)

F7 h(1—A
< Cara ISy vl )
F1(i)

Ah h(1—=X Ah
< CaraCprty [ol15 Wl

d
where Cp, v > 0 is the constant from the continuous embedding V' — LPo (A) = Li» (A),
cf. Theorem F.1 (i). Let C; > 0 the constant from Lemma 3.2.1 and set
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3.2. Quasi-linear stochastic equations: p-Laplacian

Young’s inequality with ¢ = & and ¢’ = zﬁ yields to

(1-X ~— h(1—X =
CaraCpty 0135 I = [CT CaraCoty 1011353 | [Co IR

Youngp_)\h _ (1-x Ah SV
< [OﬁCQLAcOannLQ W2 e eli]

= CllolBagny + 5Cr ol < & (14 o) + 5O ol

Hence by Remark 3.2.2 and Lemma 3.2.1 we conclude

2y Ay gy (v), 00y + 1B ()13, + (2C1 = C1) o], < (C+ L) (1+ o))
<+ K HUH?{

for all t € [0, 7], since Fy = Cy, K = Cy and Cp > C+ Lp.
Claim: (A4) holds.

Let w € V. The operator norm for A, r (u) : V. — R with oo = p can be estimated with
(3.2.4) and Lemma B.3

p

p—1
14p, 50 (W)l = sup | e (Ap o (1), 0) |
o]l =1
(3.2.4) I
< [(Cor(CBy+ ) +1) (14 el )]

B.3

< (Cor (C2y + Cry) +1)7 1 - 27D (1 4 [[u]h)
<(F+ K [ull§) (1+ ullfy)

>1

P

for all ¢ € [0,7] with K = Cp and Cy > 2-0=) (Cgp (G2 + €1y ) +1)7 and since F
is non-negative.

Claim: (Al), (B1), (B2) and (B3) holds.

We refer to the proof of Example 3.2.3, since «, 3, v and g, K, F' and r = p—1 are identical
to the situation there and all the estimates are independent of d and do not involve s or h.
Claim: (3.2.1) has a solution.

Theorem 2.2.1 gives us a solution X = (X;) o,7]- With 2.2.1 (i) we have

te

sup E [HXtH?ﬂ < 0.
t€[0,T

Claim: If n = 0, then the solution is unique.
Suppose 7 =1 = 0. Then by 2.2.1 (ii) our solution is unique and we have

E

sup HXtH?{C] < 00.
te[0,7
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O

3.2.5 Remark. (i) Suppose ( = 1. Then in the proof of Examples 3.2.3 and 3.2.J we
have 8 = 0. Therefore, by Remark 2.3.6 (ii), we can even choose n =y < 6 to get

existence, 1.e.
2P ifd<p
O < < ) )
s {22_p, else.

(i) To gather uniqueness in Examples 3.2.3 and 3.2.4 we do not need to assume that
n = 0. We only need that 0 < n < T, where I is the constant from (2.2.1) (cf. page
17), i.e. we can assume

247r¢
<4c«a%DG+@g+4O—U—3-4

0<n

i Erample 3.2.3 and, in Fxample 3.2./,

23P(
4C ((8CEpe+2) ¢ +45—1) —3-4¢

0<n<
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Appendix

A. Supplements

The next Lemma is a supplement to the proof of (A2) in Example 3.2.4.
A.1 Lemma. Let2 <p<d,2<h<np,

d, h—2
py= Wy _p(h=2)
d—p h(p—2)
and py such that
1_1-a
DA 2 Po
Then
(i) h <px.
) (h=2)p® _
(%) G=zd—p) " et = PO-
Proof. (i): From the definition of py we deduce
oy = — 2P0
AT =N po+ 20
Then we see that
h<p>\:¢ & h(1—=A)po+2X\h < 2po.
(1=XA)po +2A
But by the definition of A and since h —2 > 0 and p < d
h(p—2)—p(h—2 h—2
=2 =ph=2) " P =2} 4\ po+ 200 < 20
p—2 p—2
2hp — 2h 2ppo — 4
P Zojz PPo — P <2py & hp—hpy—2p < —2pg

d
& ph-2)<p(h-2) <& p<pw=g§5 & dp—p’ <dp

and this is obviously true, so (i) holds.
(ii): First we calculate

Px

= 200 [2p0 — (1 — \) poh — 2\ !
o h po [2po — (1= A) po ]

=2po (p—2) [2po (p — 2) — hpo (p — 2) + pop (h — 2) — 2p (h — 2)]

=po(p—2)[(h—2)(po—p)] "
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Then
pr_(h=2)p" pop? o
px—h (p=2)(d=p) (po—p)(d—p)
because
2 2 dp
p°=p +dp—dp=dp—p(d—p)= i 7 (d—p)=(po—p)(d—p).
O
A2 Lemma. Let ]l <a<ooand 0 < p<g<oo. Then
aP < af.
Proof.
Ina>0
a? =exp(In(af)) =exp(plna) < exp(glna)=al.
O

A.3 Lemma. Let d € N, A C R? an open, bounded domain. Consider the Gelfand triple

*

Vi=HY (A CH:=L2(A) C (Hg’2 (A)) =V
Let C§° (A) be the set of all infinitely differentiable real-valued functions with compact
support in A. Then the Laplace operator A: C§° (A) — C§° (A) extends uniquely to an
operator A: V. — V* and we have

|y (Au, v)y | < lully [o]ly -

Proof. Cf. [PRO7, Example 4.1.7]. Since C§°(A) C L%(A) C <H5’2 (A)>*, we have

A: C§° (A) — V*. Further let us note that C5° (A) is dense in HS’Z (A). By integrat-
ing by parts and Holder’s inequality, we have for u,v € C§° (A)

[y, )y = (At )| = \— [ vu(@).vo @) df]

<([vucer dg)é ([ Ivecr dg); — luly vl -

Hence we have
[Aully. < Jlully,

and therefore A extends uniquely to an operator A: V — V* with A = A.
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B. Inequalities

The most important inequalities that we used throughout this thesis are collected in this
section.
B.1 Lemma (Young’s inequality). Let a,b >0, 1 <p < o0, p' = %. Then

1 1
ab § *CLP + *Ibp .
p p
Proof. See [Alt06, (1-11), p. 52]. O

B.2 Lemma (Generalized Holder’s inequality). Let (X, X, u) a measurable space, m € N
and pi,q € [1,00] fori € {1,...,m} such that

with % =0 if r = co. Further let u; € LPi (X, u;R) for alli € {1,...,m}. Then we have
uy - um € L9(X, 13 R) and

m
[[w
i=1

Proof. See [Alt06, Lemma 1.16]. O

m

< H HuiHLPi(X,/L;]R) :
Li(XuR) =1

B.3 Lemma. Leta,b € R and 1 < p < oco. Then
(a+b)P < 2P~ (aP 4+ bP).
Proof. Since p > 1, the mapping x — z? is convex. With Jensen’s inequality we get

p D 1 1A\? D 1p 1 p—1 (. p

O

B.4 Lemma (Bihari’s inequality). Let g: [0, 00 — [0, 00[ be a non-decreasing, continuous
function with g ((0,00)) C (0,00). Let A > 0 and suppose f,h: [0,00[ — [0,00[ are
measurable functions with h € LI ([0,00]) and such that for all t > 0 we have

loc

fB) <A+ / h(s)g(f (s)) ds. (B.1)

Let xo € (0,00) fized such that G (z) := ffo % < oo for all x € (0,00). Furthermore let

To € (0,00) such that G (A) —i—fOTO h(s) ds belongs to the domain of the inverse function of
G, namely G=1: G ((0,1)) — (0,00). Then for all 0 <t < Ty we have

f@) <Gt (G (A) + /Ot h(s) ds) . (B.2)
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Proof. See |[LR13, Lemma 2.1] and [Bih56]. O

From Bihari’s inequality we can deduce the well known Gronwall’s inequality even for
non-continuous, but measurable functions.

B.5 Lemma (Gronwall’s inequality). Let 0 < T < oo and let f: [0,T] — R measurable
and non-negative. Let A >0, b € (0,00) such that

f(t)<A+/tbf(s) ds, te0,7T]. (B.3)
0
Then for allt € [0,T]

f(t) < At

Proof. Consider g (x) := bx, h = 1. Then ¢ is continuous and, since b > 0, g is non-
decreasing and obeys ¢ ((0,00)) C (0,00). In the situation of Lemma B.4 we set xg = 1

and see that
| 1 Inx
Gac:/ ds==-In()]f=— <

for all z € (0,00). The inverse function of G is given by G~ (y) = €%, because

GG (x) =% =2 forallz e (0,00).

Therefore we can choose Ty := T, see also [LR10, Remark 2.1]. In this setup, (B.3) implies
(B.1):

f(t)<A+/bf()dS—A+/h( Yg(f(s)) ds foralltel0,T].

Then by Bihari’s inequality we get for all 0 <t < T

< e < +/0th ) (A +)

Aebt
O
C. Inequalities on Hilbert spaces
Let (H,| - ||z) be a Hilbert space with inner product (-,-); and standard norm || - ||z =

V <'7 >H
C.1 Lemma. Let p € [2,00). There ezists a constant C = C (p) > 0 such that for all
x,y € H we have

-2
e+ bl — Nl — ol o k] < € (el + )
If p = 2 then we have

[+ B3y = 2l = 2 G2, ) | = Il
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C.2 Remark. By [MR13, Lemma 2.2] Lemma C.1 holds true for 1 < p < 2. More
precisely, there exists a constant C = C (p) > 0 such that for any x,y € H we have

e+ ylly = el —pllelf @ v < Cllylly -
To prove Lemma C.1 we need the following Lemma.

C.3 Lemma. Let p < co. For any x,y € R the following inequalities hold:
(i) |z +yl” <27 aP + 4P|, if p > 1.
(it) (z+y)P —aP <2772 (pyaP~! + yP) ( <2071 (pyaP~t + yP) ) ifp > 2.

Proof. (i) For p =1 there is nothing to show. For p > 1 we use the generalized Holder
inequality to see that

-1 1\P
oyl = 1w+ 1oyl < (1415 o717 ) =2 o 47
(ii) We use the fundamental theorem of calculus and (i) to obtain
z+y d z+y
(x+y)lf —2P = / — (tP) dt:p/ P~ de
y L) y
= p/ (x+ )P dt <p2p—2/ (2P~ 271 dt
0 0

y
= or2 <pya:p1 +/ ptP~1 dt) =272 (pyaP~ ! +4P).
0
O
Proof of Lemma C.1. For given and fixed p € [2,00) and z, h € H we set g (t) = ||z+th|,.

Then
d

=90 = pllo +thl (elhl + (b))

and

[z -+ bl = el = pllelf (@ k| = 19 (1) = 9 (0) = ©)] <Ig (1) =g (0)] + g’ (0)].

First step: We first apply the Cauchy-Schwarz-inequality to |¢’ (0)| and then Young’s
inequality to obtain

B C.—8. B
g O = plal? ah) gl < plal kg

Young p—1 1
L < Ll + puxnz) < &1 (Il + R .

where C1 = C1 (p) =p— 1.
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Second step: According to the mean value theorem there exists ¢ty € [0, 1] such that
g (1) — g (0) = ¢’ (tp). Using the triangle inequality we have

1 _ _
’ |9 (to)] = ||z + tohll * [tollPlE + (. h | < (lller + tollll| )= (tollBllF + |, ) )
p—2
< <||w||H+ sup tIIhIIH) (sup tlnlE + |<$vh>H|)
t€[0,1] t€[0,1]
=l + IRl 1205 + (el + 1512 @, ) g - (C.1)

Now we apply Young’s inequality to the first summand of (C.1) and then Lemma C.3 and
obtain

_ p—2 2
(2l + 12?2 IRl < T(IIJSHHJrHhHH)erEHhH%

C.3 -2 2
1D
< 2 17 (=l + 1p0%) + ];IIhII%

< Ca(ll=lf + 1Inl)
with Cy = Oy (p) = 2”‘“’?%1 since p—1 > 1 implies 2?71 (p—1) > 2 and 2?71 (p— 1) >
2P=1(p —2).
Again, the Cauchy-Schwarz inequality, Young’s inequality (used two times) and Lemma
C.3 used on the second summand of (C.1) imply

C.—S.
) —2
(e + 0l bl < el -+ Wl el el
p—2 2
< P22 (all + ) + el
p p
C.3 — 2 2 P P
1P
< P2 (a4 i) + Sl I
p p
_1p—2 2 /1 1
< 2222l i) + 2 (Gl + gl

= Cs(llzlfy +Inl%) .
where C5 = C5 (p) = % (2t (p—-2)+1).
Third step: We combine the results from step one and two and finally have
lg (1) = g (0)] + [¢' (0)| < (C1+pCa + pCs) (||l + [IRll) -
Setting C' = (Cy + pCy + pC3) = p+2P~1 (2p — 3), we finish the proof of the first statement.

Fourth step: The second statement follows immediately by

lz + hlly = llzlF + 1Al + 2 (2, h)y

O
C.4 Lemma. For anyp > 0 and z,y € H we have
- 2
Ul a =yl v =y, = 277 o —ylf5>.
Proof. See |Liu09, Lemma 3.1]. O
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D. Tools on processes

D. Tools on processes

Let (Q, F, P) be a probability space and (]:t)te[O,T}’ 0 < T < 0, be a filtration on F.
Let (H, |||l ;) be a separable Hilbert space and M2 (H) the space of all square integrable
martingales on H with respect to (]:t)te[o,T] up to time 7.

D.1 Proposition. Let M € M2 (H). Then there exists a unique predictable process (M)
of bounded variation such that

1M (D)7 — (M), t=0,
s a martingale.
Proof. See |[PZ07, Remark 3.46|. O

D.2 Proposition. Let M a cadlag, local (F;)-martingale in H. Let 1, a sequence of
partitions {0 <P <o < tf‘nn} such that limy, o ty, — oo and the for the mesh of T, we
have limy, 00 SUD| <<, —1 {tz - tZ—H‘ =0. Then

mn—1 5
kz_; HMt;;At - Mtg+1/\tHH
converges in L' (Q, P).
Proof. See |[Mé82, Theorem 18.6]. O
D.3 Definition. The limiting process in the previous Proposition is denoted by

0],
for t € [0,7T] and called the square bracket of M.

The next theorem will show that hitting times of cadlag processes are stopping times.
D.4 Theorem. Let X be an Fi-adapted right-continuous process with values in H. Then
Tr=inf{t >0 || X (¢)|| > R}, R>0,

18 a stopping time.
Proof. See |Kal97, Theorem 6.7]. O

D.5 Theorem (Burkholder-Davis-Gundy inequality). Let (M), be a real-valued, cadlag
local martingale on a probability space (0, F, P) with respect to a normal filtration (]:t)te[o,T]
with My =0 and let p > 1.

(i) There exists a constant C = C (p) > 0 such that for every stopping time 7 < T we
have

E

sup |Mt\p] < CE [[M]ﬂ .
te[0,7]
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1
(ii) If E [[M]%] < 00, then (M)yeio gy is @ martingale.

Proof. Part (i): Apply [Kal97, Theorem 23.12] to the stopped process (Miar)yejo 7). (Also
see [KS91, Theorem 3.28| for the continuous case.)

Part (ii): Cf. [Kal97, Corollary 15.9]. This proof is quoted from a newer, not yet published
version of [PR0O7, Proposition D.0.1]: Let 7,: @ — [0,7] be a sequence of stopping times
such that (Mt/\Tn)tE[O,T] is a martingale and lim,, o, 7, = T. Then for all ¢ € [0, T]

lim Mip,, = My P-as.

n—oo

By (i) we have

sup |[Myar, | < sup |Ms| € Lt (G R).
neN s€[0,T7]

Lebesgue’s dominated convergence theorem hence gives us for all t € [0, 7]

lim Miny, = M; in L' (Q;R)
n—oo

and so (ii) follows.

O
E. Miscellaneous tools
E.1 Theorem (Banach-Alaoglu). Let X be a Banach space. Then the closed unit ball
X* 2 B1(0) = {f € X*|||fllx- <1}
1s weakly-star compact.
Proof. See |Brel0, Theorem 3.16]. O

E.2 Lemma. Let (Q, F, P) be a probability space and 0 < T < co. Let f: Q2 x [0,T] — R
right lower semicontinuous. Then

esssup f (t) = sup f(t).
t€[0,7] t€[0,7)

Proof. By the definition of the essential supremum, we always have esssup f < sup f.
Therefore we suppose that

a:=esssup f (t) < sup f(t).
te[0,7 te[0,T]

Then there exists § > 0 such that

a—3d< sup f(t)
t€[0,7
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and for all n € N we can find ¢,, € [0, 7] with
1
Since f is right lower semicontinuous, for all n € N there exists an &, > 0 such that
1
a—0—=<f(t) forallté€ [ty t,+en).
n
This set is not a Lebesgue-zero-set, hence for all n € N we can find s,, € [t,, t, + &,) with

f(sn) < esssup f (t) ( = a).

t€[0,T]

Now 1
a—90——< f(sn) <a.
n

Letting n — oo we see the contradiction o — d < a. Hence the assertion follows.

F. Some important embeddings and interpolations

The next theorem summarizes the most important Sobolev embeddings.

F.1 Theorem. Let d € N, A C R? open and bounded. Let m,n € Ny and 1 < p,q < oo
and set HyP (A) == LP (A).

(1) If

d
m——>=2n—— and m>=n,
q

then there exists a constant C = C(m,n,p,q,d,|A]) > 0 such that for all u €
H"P (A) we have

Jallgagay < C Nl goncay -
In other words, Hy"* (A) < H{"? (A) is a continuous embedding.

(ii) If

m——>n—— and m>n,
p q
then the embedding Hy"? (A) < Hy'? (A) is continuous and compact, i.e. Hy"" (A) @
Hy? (A).
Proof. See [Alt06, 8.9 Einbettungssatz in Sobolev-Raumen, p. 328]. O]
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F.2 Remark. In the situation of Theorem F.1, all the embeddings hold for the Sobolev
spaces H™P (A) if A C R? is open, bounded and has smooth boundary.

F.3 Proposition. Let d € N, A C R? open and bounded and (1 <) d < p < co. Then
there exists a constant C = C (d, p,|A]) > 0 such that for all u € Hé’p (A)

[ull oo (ay < C VUl o) -
Proof. See |Alt06, 8.10 Satz, p. 330]. O

An important special case is Poincaré’s inequality:

F.4 Corollary (Poincaré). Let d € N, A C R? open and bounded and 1 < p < co. Then
there exists a constant C = C (p,d, |A]) > 0 such that for all u € H&’p (A;R)

/ ulP d¢ < c/ VP dé.
A A

Proof. Apply Theorem F.1 with m=1,n=0,p=q. O

F.5 Lemma. Let d € N, A C R¢ open and bounded and let 1 < p < oco. Set LP :=
LP (A) := LP (A,R) and Hy"" (A) := Hy"" (A,R) for m € N.

(i) If d =2, then for all u € H&’Q

4 2 2
Jullzs < 4fJullZ: [[Vullze .

g 1,2
(1t) If d = 3, then for all uw € H,
4 3
lullze < 8llullz2 [[Vullz: -

Proof. See [MS02, Lemma 2.1] and succeeding remark. O

F.6 Lemma. Let A C R? be an open, bounded domain with d € N and d > 3. Let
g € LY(A) + L™ (A) and € > 0. Then there exists a constant C = C (e, d,|A]) > 0 such
that for all u,v € H§’2 (A)

-

2

1
/A g/l IVe] d€ < (= gy + C lullFamy ) * (£ l0l e + C lolGam)

In particular, for e =1 we have C' = C (d,|A|) and

N

1
/A g/l IVel A€ < (llulaagqy + C lullfzen ) * (013 + Clol3a) )

Proof. This proof is taken from [LR14]. Define

1. €
Cy: = glnf {R € (0,00) ‘ HH{|9|2>R}9’ L) < Cl} )
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where C1 = C; (d,|A]) > 0 is the constant from Theorem F.1 (i) for n = 0, ¢ = dQ—_dQ,

m =1, p=2. Since g € LY (A) + L>® (A), we have Cy < co. By Hélder’s inequality with

q = 2 we get
: :
[ laltul vl ag < ( [ 1o P dg) ( [ 1o df) .
A A A

d o _d_
27

Again, Hélder’s inequality with ¢ = §, ¢’ = ;%5

1
2, 12 2 2, 12 2 2
([ 192108 a6)" < ([ Tyynmcey lof 1al® de + Cos [l )

1
Holder 2d % 9_d_ d%‘lQ 2 ’
< /,\H{|g|2>ooa} 972 d¢ /Au| e + Coe [[ullz2a)

1

Sl + ol
paay gty O IER()

= (HH{|9|2>CO€}9\
1
g2 2 2 2 2

< c? Ci \ [Vul™ d€ + Coe [[ull72(a)

by the definition of Cy and Cy. Now, since [, |Vo|* d¢ < [, |[Vo|* d€ + Lo HUH%Q(A), we
have

; 1 2
[laltulvel g < (&2 [ 9 ag + Cac lullagn ) ([ 190 €+ 2o ol

2 2 (1) 2 2 :
[ IVal® g+ Callulitan ) () (¢ [ IV0l ds+ ool

which implies the assertion for C' = Cy (¢, d, |A|).

NI

=&

O
The following Lemma is also known as the log-convexity of LP-norms.

F.7 Lemma (Interpolation of LP-norms). Let (X, A, u) be a measure space. For 0 < p <
oo we denote LP (X) := LP (X, u;R). Let 0 < pg < p1 < o0 and u € LP° (X) N LP* (X).
Then

u€e LP(X) forallpy <p<pr

Moreover, we have for all0 < A <1

1-X A
HUHLPA(X) < ||U||Lpo(x) HuHLm(x)»
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Proof. Let 0 < A < 1. We set

g =20 :<1_A+/\> Po__ Ao (I=Npit o
(1= XNpa po  p1) 1= (1= X\p1 1—N\p1

Then for the dual of ¢ we have

(I=Npi+io . (A=Npi p1<>\+1—>\>:p1

!
APo ADo A A1 Do ADA

Now by Holder’s inequality

L L 11
1-X by PX 1—\ P Apsd’ q’ p)
H’U,HL;D/\(X) = </ ‘u’( )P ‘u‘ PX d:u’) < (/ ’u‘( )Prq d/,L) (/ ’U‘ Pr] dM)
X X X
(I-=M)py 1 Apy 1

Po P P1 PA _
=( J du) ( [ 1l du) = 55, el )

and the second assertion follows. Since A is arbitrary, the first assertion follows.

Q=
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